ndeclarke's picture
End of training
c079a9a verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-base-malayalam-colab-CV17.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ml
          split: test
          args: ml
        metrics:
          - name: Wer
            type: wer
            value: 0.7675693101225016

whisper-base-malayalam-colab-CV17.0

This model is a fine-tuned version of openai/whisper-base on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4369
  • Wer: 0.7676

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0335 1.5748 200 0.4105 0.9504
0.2301 3.1496 400 0.3121 0.8417
0.0954 4.7244 600 0.2964 0.8288
0.0442 6.2992 800 0.3350 0.7843
0.0217 7.8740 1000 0.3740 0.8133
0.0104 9.4488 1200 0.3858 0.7782
0.0048 11.0236 1400 0.4128 0.7747
0.002 12.5984 1600 0.4319 0.7747
0.0006 14.1732 1800 0.4324 0.7701
0.0002 15.7480 2000 0.4369 0.7676

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1