metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
- bleu
model-index:
- name: wav2vec2-mms-1b-CV17.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: yo
split: test
args: yo
metrics:
- name: Wer
type: wer
value: 0.6538388264431321
- name: Bleu
type: bleu
value: 0.14202013774436864
wav2vec2-mms-1b-CV17.0
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6919
- Wer: 0.6538
- Cer: 0.2510
- Bleu: 0.1420
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu |
---|---|---|---|---|---|---|
6.2938 | 3.0769 | 200 | 3.8350 | 0.9981 | 0.9092 | 0.0 |
2.0522 | 6.1538 | 400 | 0.7219 | 0.6997 | 0.2730 | 0.1116 |
0.7043 | 9.2308 | 600 | 0.7137 | 0.7419 | 0.2682 | 0.0933 |
0.6497 | 12.3077 | 800 | 0.6962 | 0.6664 | 0.2667 | 0.1318 |
0.614 | 15.3846 | 1000 | 0.6680 | 0.6586 | 0.2596 | 0.1356 |
0.5794 | 18.4615 | 1200 | 0.6798 | 0.6722 | 0.2599 | 0.1254 |
0.5439 | 21.5385 | 1400 | 0.6724 | 0.6665 | 0.2541 | 0.1287 |
0.5146 | 24.6154 | 1600 | 0.6906 | 0.6704 | 0.2513 | 0.1327 |
0.489 | 27.6923 | 1800 | 0.6886 | 0.6599 | 0.2509 | 0.1390 |
0.4668 | 30.7692 | 2000 | 0.6919 | 0.6538 | 0.2510 | 0.1420 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1