ndeclarke's picture
End of training
c07a01c verified
|
raw
history blame
2.74 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
  - bleu
model-index:
  - name: wav2vec2-mms-1b-CV17.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: yo
          split: test
          args: yo
        metrics:
          - name: Wer
            type: wer
            value: 0.6538388264431321
          - name: Bleu
            type: bleu
            value: 0.14202013774436864

wav2vec2-mms-1b-CV17.0

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6919
  • Wer: 0.6538
  • Cer: 0.2510
  • Bleu: 0.1420

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
6.2938 3.0769 200 3.8350 0.9981 0.9092 0.0
2.0522 6.1538 400 0.7219 0.6997 0.2730 0.1116
0.7043 9.2308 600 0.7137 0.7419 0.2682 0.0933
0.6497 12.3077 800 0.6962 0.6664 0.2667 0.1318
0.614 15.3846 1000 0.6680 0.6586 0.2596 0.1356
0.5794 18.4615 1200 0.6798 0.6722 0.2599 0.1254
0.5439 21.5385 1400 0.6724 0.6665 0.2541 0.1287
0.5146 24.6154 1600 0.6906 0.6704 0.2513 0.1327
0.489 27.6923 1800 0.6886 0.6599 0.2509 0.1390
0.4668 30.7692 2000 0.6919 0.6538 0.2510 0.1420

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1