|
--- |
|
language: |
|
- en |
|
- ko |
|
license: llama3 |
|
library_name: transformers |
|
tags: |
|
- tech |
|
- translation |
|
- enko |
|
- ko |
|
base_model: |
|
- meta-llama/Meta-Llama-3-8B-Instruct |
|
datasets: |
|
- nayohan/026_tech_translation |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# **Introduction** |
|
The model was trained to translate a single sentence from English to Korean with a 1.3M dataset in the technology science domain. |
|
Dataset: [nayohan/tech_science_translation](https://huggingface.co/datasets/nayohan/tech_science_translation) |
|
|
|
### **Loading the Model** |
|
|
|
Use the following Python code to load the model: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "nayohan/llama3-8b-translation-en-ko-1sent" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
``` |
|
|
|
### **Generating Text** |
|
To generate text, use the following Python code: No support for other languages or reverse direction and styles at this time. |
|
```python |
|
source="en" |
|
target="ko" |
|
style="written" |
|
SYSTEM_PROMPT=f"Acts as a translator. Translate {source} sentences into {target} sentences in {style} style." |
|
s = "The aerospace industry is a flower in the field of technology and science." |
|
conversation = [{'role': 'system', 'content': SYSTEM_PROMPT}, |
|
{'role': 'user', 'content': s}] |
|
|
|
inputs = tokenizer.apply_chat_template( |
|
conversation, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors='pt' |
|
).to("cuda") |
|
|
|
outputs = model.generate(inputs, max_new_tokens=256) |
|
print(tokenizer.decode(outputs[0][len(inputs[0]):])) |
|
``` |
|
``` |
|
# Result |
|
# INPUT: <|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nActs as a translator. Translate en sentences into ko sentences in written style.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nThe aerospace industry is a flower in the field of technology and science.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n |
|
# OUTPUT: 항공 우주 산업은 기술과 과학 분야의 꽃이라고 할 수 있다. |
|
|
|
## [Warning!] In multiple sentences, there is a tendency to output in a single sentence. |
|
# INPUT: <|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nActs as a translator. Translate ko sentences into en sentences in written style.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n |
|
Technical and basic sciences are very important in terms of research. It has a significant impact on the industrial development of a country. Government policies control the research budget.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n |
|
# OUTPUT: 연구 측면에서 기술 및 기초 과학은 국가의 산업 발전에 큰 영향을 미치며 정부 정책은 연구 예산을 통제한다. |
|
``` |
|
|
|
### **Citation** |
|
```bibtex |
|
@article{llama3modelcard, |
|
title={Llama 3 Model Card}, |
|
author={AI@Meta}, |
|
year={2024}, |
|
url={https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} |
|
} |
|
``` |
|
Our trainig code can be found here: [TBD] |