Edit model card

SentenceTransformer based on BookingCare/bkcare-bert-pretrained

This is a sentence-transformers model finetuned from BookingCare/bkcare-bert-pretrained on the facebook/xnli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BookingCare/bkcare-bert-pretrained
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • **Languages:**vi

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("nampham1106/bkcare-text-emb-v1.0")
# Run inference
sentences = [
    'Tôi sẽ làm tất cả những gì ông muốn. julius hạ khẩu súng lục .',
    'Tôi sẽ ban cho anh những lời chúc của anh , julius bỏ súng xuống .',
    'Nó đến trong túi 400 pound .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.6867
spearman_cosine 0.6701
pearson_manhattan 0.6734
spearman_manhattan 0.669
pearson_euclidean 0.6744
spearman_euclidean 0.6701
pearson_dot 0.6867
spearman_dot 0.6701
pearson_max 0.6867
spearman_max 0.6701

Semantic Similarity

Metric Value
pearson_cosine 0.6851
spearman_cosine 0.6686
pearson_manhattan 0.6727
spearman_manhattan 0.6683
pearson_euclidean 0.6739
spearman_euclidean 0.6695
pearson_dot 0.6803
spearman_dot 0.6631
pearson_max 0.6851
spearman_max 0.6695
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nampham1106/bkcare-embed-text-v1.0

Finetuned
(1)
this model

Dataset used to train nampham1106/bkcare-embed-text-v1.0

Evaluation results