SentenceTransformer based on BookingCare/bkcare-bert-pretrained
This is a sentence-transformers model finetuned from BookingCare/bkcare-bert-pretrained on the facebook/xnli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BookingCare/bkcare-bert-pretrained
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- **Languages:**vi
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("nampham1106/bkcare-text-emb-v1.0")
# Run inference
sentences = [
'Tôi sẽ làm tất cả những gì ông muốn. julius hạ khẩu súng lục .',
'Tôi sẽ ban cho anh những lời chúc của anh , julius bỏ súng xuống .',
'Nó đến trong túi 400 pound .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev-768
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6867 |
spearman_cosine | 0.6701 |
pearson_manhattan | 0.6734 |
spearman_manhattan | 0.669 |
pearson_euclidean | 0.6744 |
spearman_euclidean | 0.6701 |
pearson_dot | 0.6867 |
spearman_dot | 0.6701 |
pearson_max | 0.6867 |
spearman_max | 0.6701 |
Semantic Similarity
- Dataset:
sts-dev-512
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6851 |
spearman_cosine | 0.6686 |
pearson_manhattan | 0.6727 |
spearman_manhattan | 0.6683 |
pearson_euclidean | 0.6739 |
spearman_euclidean | 0.6695 |
pearson_dot | 0.6803 |
spearman_dot | 0.6631 |
pearson_max | 0.6851 |
spearman_max | 0.6695 |
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for nampham1106/bkcare-embed-text-v1.0
Base model
BookingCare/bkcare-bert-pretrainedDataset used to train nampham1106/bkcare-embed-text-v1.0
Evaluation results
- Pearson Cosine on sts dev 768self-reported0.687
- Spearman Cosine on sts dev 768self-reported0.670
- Pearson Manhattan on sts dev 768self-reported0.673
- Spearman Manhattan on sts dev 768self-reported0.669
- Pearson Euclidean on sts dev 768self-reported0.674
- Spearman Euclidean on sts dev 768self-reported0.670
- Pearson Dot on sts dev 768self-reported0.687
- Spearman Dot on sts dev 768self-reported0.670
- Pearson Max on sts dev 768self-reported0.687
- Spearman Max on sts dev 768self-reported0.670