multimodalart's picture
Update README.md
fcf7a9c verified
|
raw
history blame
2.17 kB
metadata
language:
  - en
pipeline_tag: unconditional-image-generation
tags:
  - Diffusion Models
  - Stable Diffusion
  - Perturbed-Attention Guidance
  - PAG

Perturbed-Attention Guidance SDXL

image/jpeg

Project / arXiv / GitHub

This repository is based on Diffusers. The pipeline is a modification of StableDiffusionXLPipeline to add Perturbed-Attention Guidance (PAG). The original Perturbed-Attention Guidance by Hyoungwon Cho is availiable at hyoungwoncho/sd_perturbed_attention_guidance

Quickstart

Loading Custom Piepline:

from diffusers import StableDiffusionXLPipeline

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
    torch_dtype=torch.float16
)

device="cuda"
pipe = pipe.to(device)

Unconditional sampling with PAG:

output = pipe(
        "",
        num_inference_steps=50,
        guidance_scale=0.0,
        pag_scale=5.0,
        pag_applied_layers=['mid']
    ).images

Sampling with PAG and CFG:

output = pipe(
        "the spirit of a tamagotchi wandering in the city of Vienna",
        num_inference_steps=25,
        guidance_scale=4.0,
        pag_scale=3.0,
        pag_applied_layers=['mid']
    ).images

Parameters

guidance_scale : gudiance scale of CFG (ex: 7.5)

pag_scale : gudiance scale of PAG (ex: 4.0)

pag_applied_layers: layer to apply perturbation (ex: ['mid'])

pag_applied_layers_index : index of the layer to apply perturbation (ex: ['m0'])

Stable Diffusion XL Demo

To join a demo of PAG on Stable Diffusion, run sd_pag_demo.ipynb.