metadata
language:
- en
pipeline_tag: unconditional-image-generation
tags:
- Diffusion Models
- Stable Diffusion
- Perturbed-Attention Guidance
- PAG
Perturbed-Attention Guidance SDXL
This repository is based on Diffusers. The pipeline is a modification of StableDiffusionXLPipeline to add Perturbed-Attention Guidance (PAG). The original Perturbed-Attention Guidance by Hyoungwon Cho is availiable at hyoungwoncho/sd_perturbed_attention_guidance
Quickstart
Loading Custom Piepline:
from diffusers import StableDiffusionXLPipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
)
device="cuda"
pipe = pipe.to(device)
Unconditional sampling with PAG:
output = pipe(
"",
num_inference_steps=50,
guidance_scale=0.0,
pag_scale=5.0,
pag_applied_layers=['mid']
).images
Sampling with PAG and CFG:
output = pipe(
"the spirit of a tamagotchi wandering in the city of Vienna",
num_inference_steps=25,
guidance_scale=4.0,
pag_scale=3.0,
pag_applied_layers=['mid']
).images
Parameters
guidance_scale
: gudiance scale of CFG (ex: 7.5
)
pag_scale
: gudiance scale of PAG (ex: 4.0
)
pag_applied_layers
: layer to apply perturbation (ex: ['mid'])
pag_applied_layers_index
: index of the layer to apply perturbation (ex: ['m0'])
Stable Diffusion XL Demo
To join a demo of PAG on Stable Diffusion, run sd_pag_demo.ipynb.