metadata
language:
- en
pipeline_tag: unconditional-image-generation
tags:
- Diffusion Models
- Stable Diffusion
- Perturbed-Attention Guidance
- PAG
Perturbed-Attention Guidance for SDXL
The original Perturbed-Attention Guidance for unconditional models and SD1.5 by Hyoungwon Cho is availiable at hyoungwoncho/sd_perturbed_attention_guidance
This repository is just a simple SDXL implementation of the Perturbed-Attention Guidance (PAG) on Stable Diffusion XL (SDXL) for the 🧨 diffusers library.
Quickstart
Loading Custom Pipeline:
from diffusers import StableDiffusionXLPipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
)
device="cuda"
pipe = pipe.to(device)
Unconditional sampling with PAG:
output = pipe(
"",
num_inference_steps=50,
guidance_scale=0.0,
pag_scale=5.0,
pag_applied_layers=['mid']
).images
output = pipe(
"the spirit of a tamagotchi wandering in the city of Vienna",
num_inference_steps=25,
guidance_scale=4.0,
pag_scale=3.0,
pag_applied_layers=['mid']
).images
Parameters
guidance_scale
: guidance scale of CFG (ex: 7.5
)
pag_scale
: guidance scale of PAG (ex: 4.0
)
pag_applied_layers
: layer to apply perturbation (ex: ['mid'])
pag_applied_layers_index
: index of the layers to apply perturbation (ex: ['m0', 'm1'])