muhtasham's picture
Librarian Bot: Add base_model information to model (#2)
6c83afe
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - finer-139
  - nlpaueb/finer-139
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: google/bert_uncased_L-2_H-128_A-2
model-index:
  - name: bertiny-finetuned-finer
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: finer-139
          type: finer-139
          args: finer-139
        metrics:
          - type: precision
            value: 0.5339285714285714
            name: Precision
          - type: recall
            value: 0.036011080332409975
            name: Recall
          - type: f1
            value: 0.06747151077513258
            name: F1
          - type: accuracy
            value: 0.9847166143263048
            name: Accuracy

bertiny-finetuned-finer

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the finer-139 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0882
  • Precision: 0.5339
  • Recall: 0.0360
  • F1: 0.0675
  • Accuracy: 0.9847

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0871 1.0 11255 0.0952 0.0 0.0 0.0 0.9843
0.0864 2.0 22510 0.0895 0.7640 0.0082 0.0162 0.9844
0.0929 3.0 33765 0.0882 0.5339 0.0360 0.0675 0.9847

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1