This model is a RoBERTa model trained on a programming language code - WolfSSL + examples of cybersecurity vulnerabilities related to input validation, diffused with the Linux Kernel code. The model is pre-trained to understand the concep of a singleton in the code
The programming language is C/C++, but the actual inference can also use other languages.
Using the model to unmask can be done in the following way
from transformers import pipeline
unmasker = pipeline('fill-mask', model='mstaron/CyLBERT')
unmasker("Hello I'm a <mask> model.")
To obtain the embeddings for downstream task can be done in the following way:
# import the model via the huggingface library
from transformers import AutoTokenizer, AutoModelForMaskedLM
# load the tokenizer and the model for the pretrained CyLBERT
tokenizer = AutoTokenizer.from_pretrained('mstaron/CyLBERT')
# load the model
model = AutoModelForMaskedLM.from_pretrained("mstaron/CyLBERT")
# import the feature extraction pipeline
from transformers import pipeline
# create the pipeline, which will extract the embedding vectors
# the models are already pre-defined, so we do not need to train anything here
features = pipeline(
"feature-extraction",
model=model,
tokenizer=tokenizer,
return_tensor = False
)
# extract the features == embeddings
lstFeatures = features('Class HTTP::X1')
# print the first token's embedding [CLS]
# which is also a good approximation of the whole sentence embedding
# the same as using np.mean(lstFeatures[0], axis=0)
lstFeatures[0][0]
In order to use the model, we need to train it on the downstream task.
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.