msperka's picture
msperka/aleph_bert-finetuned-ner
aa98849
metadata
license: apache-2.0
base_model: onlplab/alephbert-base
tags:
  - generated_from_trainer
datasets:
  - nemo_corpus
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: aleph_bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: nemo_corpus
          type: nemo_corpus
          config: flat_token
          split: validation
          args: flat_token
        metrics:
          - name: Precision
            type: precision
            value: 0.8333333333333334
          - name: Recall
            type: recall
            value: 0.8262454434993924
          - name: F1
            type: f1
            value: 0.8297742525930445
          - name: Accuracy
            type: accuracy
            value: 0.9739268365222564

aleph_bert-finetuned-ner

This model is a fine-tuned version of onlplab/alephbert-base on the nemo_corpus dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1408
  • Precision: 0.8333
  • Recall: 0.8262
  • F1: 0.8298
  • Accuracy: 0.9739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.042 1.0 618 0.1317 0.8198 0.8068 0.8132 0.9720
0.0185 2.0 1236 0.1367 0.8224 0.8214 0.8219 0.9714
0.0185 3.0 1854 0.1408 0.8333 0.8262 0.8298 0.9739

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cpu
  • Datasets 2.15.0
  • Tokenizers 0.15.0