metadata
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: ABL_trad_k
results: []
ABL_trad_k
This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.8641
- Accuracy: 0.6842
- F1: 0.6826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 36
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.9411 | 1.0 | 1500 | 0.9017 | 0.5792 | 0.5764 |
0.8328 | 2.0 | 3000 | 0.8458 | 0.62 | 0.6188 |
0.8006 | 3.0 | 4500 | 0.8183 | 0.64 | 0.6391 |
0.7283 | 4.0 | 6000 | 0.8154 | 0.6442 | 0.6430 |
0.7006 | 5.0 | 7500 | 0.7978 | 0.6492 | 0.6487 |
0.6555 | 6.0 | 9000 | 0.8009 | 0.6542 | 0.6536 |
0.6263 | 7.0 | 10500 | 0.8033 | 0.6617 | 0.6612 |
0.5805 | 8.0 | 12000 | 0.8155 | 0.6658 | 0.6657 |
0.5385 | 9.0 | 13500 | 0.8608 | 0.675 | 0.6729 |
0.5108 | 10.0 | 15000 | 0.8545 | 0.6733 | 0.6732 |
0.4791 | 11.0 | 16500 | 0.8950 | 0.6758 | 0.6750 |
0.4423 | 12.0 | 18000 | 0.9145 | 0.6792 | 0.6790 |
0.4295 | 13.0 | 19500 | 0.9497 | 0.6708 | 0.6707 |
0.3782 | 14.0 | 21000 | 1.0309 | 0.6742 | 0.6734 |
0.3656 | 15.0 | 22500 | 1.0706 | 0.6783 | 0.6774 |
0.3312 | 16.0 | 24000 | 1.1327 | 0.6733 | 0.6730 |
0.3008 | 17.0 | 25500 | 1.1870 | 0.6825 | 0.6822 |
0.2851 | 18.0 | 27000 | 1.3284 | 0.685 | 0.6847 |
0.2636 | 19.0 | 28500 | 1.4260 | 0.6858 | 0.6851 |
0.2752 | 20.0 | 30000 | 1.4733 | 0.6833 | 0.6833 |
0.2231 | 21.0 | 31500 | 1.6163 | 0.68 | 0.6800 |
0.2052 | 22.0 | 33000 | 1.7674 | 0.6792 | 0.6786 |
0.198 | 23.0 | 34500 | 1.8474 | 0.6833 | 0.6827 |
0.1854 | 24.0 | 36000 | 1.9509 | 0.6775 | 0.6766 |
0.1944 | 25.0 | 37500 | 2.0660 | 0.68 | 0.6790 |
0.1649 | 26.0 | 39000 | 2.1718 | 0.6825 | 0.6812 |
0.1443 | 27.0 | 40500 | 2.3664 | 0.68 | 0.6791 |
0.1251 | 28.0 | 42000 | 2.4144 | 0.6833 | 0.6827 |
0.1357 | 29.0 | 43500 | 2.4407 | 0.6875 | 0.6875 |
0.1279 | 30.0 | 45000 | 2.4419 | 0.6933 | 0.6932 |
0.1112 | 31.0 | 46500 | 2.5989 | 0.6833 | 0.6828 |
0.098 | 32.0 | 48000 | 2.6390 | 0.68 | 0.6792 |
0.0864 | 33.0 | 49500 | 2.7293 | 0.6792 | 0.6780 |
0.0897 | 34.0 | 51000 | 2.7814 | 0.6833 | 0.6820 |
0.0869 | 35.0 | 52500 | 2.8468 | 0.68 | 0.6787 |
0.0834 | 36.0 | 54000 | 2.8641 | 0.6842 | 0.6826 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1