Using `run_seq2seq_qa` to finetune t5-small on SquadV2
#1
by
ayazdan
- opened
I am trying to use the canonical run_seq2seq_qa
to finetune T5-small on SquadV2, but so far I was not able to reach to the f1 accuracy that you have achieved (eval_f1 ~ 66). Do you have any suggestions how to modify the script for a better finetuning?
python3 transformer-sparsity/examples/pytorch/question-answering/run_seq2seq_qa.py \
--model_name_or_path t5-small \
--dataset_name squad_v2 \
--context_column context \
--question_column question \
--answer_column answers \
--do_train \
--do_eval \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 8 \
--learning_rate 3e-5 \
--num_train_epochs 10 \
--max_seq_length 384 \
--doc_stride 128 \
--load_best_model_at_end \
--eval_steps ${eval_steps} \
--save_steps ${eval_steps} \
--evaluation_strategy steps \
--logging_steps ${eval_steps} \
--version_2_with_negative \
--logging_strategy steps \
--save_total_limit 4 \
--greater_is_better true \
--metric_for_best_model f1 \
--label_names "start_positions", "end_positions" \
--predict_with_generate \
--overwrite_output_dir \
--output_dir ${ckpt_path} 2>&1 | tee ~/${ckpt_path}/finetune_run_$(date +"%Y_%m_%d_%I_%M_%p").log