Edit model card

SentenceTransformer based on intfloat/multilingual-e5-large

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on the clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-large
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • stsb_multi_es_aug

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-64-5e")
# Run inference
sentences = [
    'tres perros gruñendo entre sí',
    'Dos perros se aproximan uno al otro en el pasto.',
    'Una mujer sonriente brinda cariño a un pequeño bebé.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.828
spearman_cosine 0.8343
pearson_manhattan 0.8228
spearman_manhattan 0.8349
pearson_euclidean 0.8231
spearman_euclidean 0.8349
pearson_dot 0.8196
spearman_dot 0.8249
pearson_max 0.828
spearman_max 0.8349

Semantic Similarity

Metric Value
pearson_cosine 0.8236
spearman_cosine 0.8333
pearson_manhattan 0.8218
spearman_manhattan 0.8332
pearson_euclidean 0.8218
spearman_euclidean 0.8334
pearson_dot 0.8102
spearman_dot 0.8179
pearson_max 0.8236
spearman_max 0.8334

Semantic Similarity

Metric Value
pearson_cosine 0.8162
spearman_cosine 0.8304
pearson_manhattan 0.8179
spearman_manhattan 0.8301
pearson_euclidean 0.8184
spearman_euclidean 0.8302
pearson_dot 0.7879
spearman_dot 0.7905
pearson_max 0.8184
spearman_max 0.8304

Semantic Similarity

Metric Value
pearson_cosine 0.7942
spearman_cosine 0.8198
pearson_manhattan 0.8089
spearman_manhattan 0.8223
pearson_euclidean 0.8092
spearman_euclidean 0.822
pearson_dot 0.7342
spearman_dot 0.7352
pearson_max 0.8092
spearman_max 0.8223

Semantic Similarity

Metric Value
pearson_cosine 0.7727
spearman_cosine 0.8077
pearson_manhattan 0.7976
spearman_manhattan 0.8148
pearson_euclidean 0.7979
spearman_euclidean 0.8124
pearson_dot 0.6726
spearman_dot 0.6673
pearson_max 0.7979
spearman_max 0.8148

Semantic Similarity

Metric Value
pearson_cosine 0.863
spearman_cosine 0.8813
pearson_manhattan 0.8771
spearman_manhattan 0.8811
pearson_euclidean 0.877
spearman_euclidean 0.8812
pearson_dot 0.8582
spearman_dot 0.8707
pearson_max 0.8771
spearman_max 0.8813

Semantic Similarity

Metric Value
pearson_cosine 0.859
spearman_cosine 0.88
pearson_manhattan 0.8744
spearman_manhattan 0.8791
pearson_euclidean 0.8748
spearman_euclidean 0.8796
pearson_dot 0.8464
spearman_dot 0.855
pearson_max 0.8748
spearman_max 0.88

Semantic Similarity

Metric Value
pearson_cosine 0.8528
spearman_cosine 0.8763
pearson_manhattan 0.8715
spearman_manhattan 0.8781
pearson_euclidean 0.8725
spearman_euclidean 0.8789
pearson_dot 0.802
spearman_dot 0.8007
pearson_max 0.8725
spearman_max 0.8789

Semantic Similarity

Metric Value
pearson_cosine 0.8392
spearman_cosine 0.8692
pearson_manhattan 0.8632
spearman_manhattan 0.8716
pearson_euclidean 0.8644
spearman_euclidean 0.8724
pearson_dot 0.7462
spearman_dot 0.7403
pearson_max 0.8644
spearman_max 0.8724

Semantic Similarity

Metric Value
pearson_cosine 0.8214
spearman_cosine 0.8621
pearson_manhattan 0.8531
spearman_manhattan 0.8632
pearson_euclidean 0.8541
spearman_euclidean 0.8633
pearson_dot 0.6854
spearman_dot 0.6726
pearson_max 0.8541
spearman_max 0.8633

Training Details

Training Dataset

stsb_multi_es_aug

  • Dataset: stsb_multi_es_aug
  • Size: 2,697 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 8 tokens
    • mean: 22.25 tokens
    • max: 68 tokens
    • min: 8 tokens
    • mean: 22.01 tokens
    • max: 79 tokens
    • min: 0.0
    • mean: 2.67
    • max: 5.0
  • Samples:
    sentence1 sentence2 score
    El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha. Un ave de color amarillo descansaba tranquilamente en una rama. 3.200000047683716
    Una chica está tocando la flauta en un parque. Un grupo de músicos está tocando en un escenario al aire libre. 1.286
    La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere 4.199999809265137
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "CoSENTLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

stsb_multi_es_aug

  • Dataset: stsb_multi_es_aug
  • Size: 697 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 8 tokens
    • mean: 22.76 tokens
    • max: 67 tokens
    • min: 7 tokens
    • mean: 22.26 tokens
    • max: 63 tokens
    • min: 0.0
    • mean: 2.3
    • max: 5.0
  • Samples:
    sentence1 sentence2 score
    Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas. Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos. 4.199999809265137
    "Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud" "A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar." 3.5
    El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario. Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida. 3.691999912261963
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "CoSENTLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss sts-dev-128_spearman_cosine sts-dev-256_spearman_cosine sts-dev-512_spearman_cosine sts-dev-64_spearman_cosine sts-dev-768_spearman_cosine sts-test-128_spearman_cosine sts-test-256_spearman_cosine sts-test-512_spearman_cosine sts-test-64_spearman_cosine sts-test-768_spearman_cosine
0.5917 100 21.7032 21.7030 0.8030 0.8124 0.8205 0.7839 0.8215 - - - - -
1.1834 200 21.4019 24.0898 0.7839 0.7972 0.8038 0.7680 0.8062 - - - - -
1.7751 300 21.2168 22.5421 0.7909 0.8027 0.8058 0.7786 0.8068 - - - - -
2.3669 400 20.7049 23.6522 0.7938 0.8049 0.8108 0.7873 0.8123 - - - - -
2.9586 500 20.5077 23.6100 0.8017 0.8116 0.8155 0.7893 0.8185 - - - - -
3.5503 600 19.2725 24.7539 0.8133 0.8254 0.8291 0.8032 0.8314 - - - - -
4.1420 700 19.0841 26.5286 0.8210 0.8298 0.8333 0.8102 0.8333 - - - - -
4.7337 800 18.6847 26.8158 0.8198 0.8304 0.8333 0.8077 0.8343 - - - - -
5.0 845 - - - - - - - 0.8692 0.8763 0.8800 0.8621 0.8813

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.1
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
66
Safetensors
Model size
560M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-64-5e

Finetuned
(71)
this model

Collection including mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-64-5e

Evaluation results