mrm8488's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (#4)
e8039dc
---
language: en
tags:
- QA
- long context
- Q&A
datasets:
- squad_v2
model-index:
- name: mrm8488/longformer-base-4096-finetuned-squadv2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 79.9242
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTc0YWU0OTlhNWY1MDYwZjBhYTkxZTBhZGEwNGYzZjQzNzkzNjFlZmExMjkwZDRhNmI2ZmMxZGI3ZjUzNzg4NyIsInZlcnNpb24iOjF9.5ZM5B9hvMhKqFneX-R53j2orSroUQNNov9zo7401MtyDL1Nfp2ZgqoUQ2teCy47pBkoqktn0j9lvUFL3BjmlAA
- type: f1
value: 83.3467
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzBiZDQ1ODg3MDYyODdkMGJjYTkxM2ExNzliYmRlYjllZTc1ZjIxODkxODkyM2QzZjg5MDhiMmQ2MTFjNGUxYiIsInZlcnNpb24iOjF9.bs4hfGGy_m5KBue2qmpGCWL28esYvJ9ms2Bhwnp1vpWiQbiTV3TDGk6Ds3wKuaBTEw_7rzePlbYNt9auHoQaDQ
---
# Longformer-base-4096 fine-tuned on SQuAD v2
[Longformer-base-4096 model](https://huggingface.co/allenai/longformer-base-4096) fine-tuned on [SQuAD v2](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task.
## Longformer-base-4096
[Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents.
`longformer-base-4096` is a BERT-like model started from the RoBERTa checkpoint and pretrained for MLM on long documents. It supports sequences of length up to 4,096.
Longformer uses a combination of a sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations.
## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓
Dataset ID: ```squad_v2``` from [HuggingFace/Datasets](https://github.com/huggingface/datasets)
| Dataset | Split | # samples |
| -------- | ----- | --------- |
| squad_v2 | train | 130319 |
| squad_v2 | valid | 11873 |
How to load it from [datasets](https://github.com/huggingface/datasets)
```python
!pip install datasets
from datasets import load_dataset
dataset = load_dataset('squad_v2')
```
Check out more about this dataset and others in [Datasets Viewer](https://huggingface.co/datasets/viewer/)
## Model fine-tuning 🏋️‍
The training script is a slightly modified version of [this one](https://colab.research.google.com/drive/1zEl5D-DdkBKva-DdreVOmN0hrAfzKG1o?usp=sharing)
## Model in Action 🚀
```python
import torch
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
ckpt = "mrm8488/longformer-base-4096-finetuned-squadv2"
tokenizer = AutoTokenizer.from_pretrained(ckpt)
model = AutoModelForQuestionAnswering.from_pretrained(ckpt)
text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this."
question = "What has Huggingface done ?"
encoding = tokenizer(question, text, return_tensors="pt")
input_ids = encoding["input_ids"]
# default is local attention everywhere
# the forward method will automatically set global attention on question tokens
attention_mask = encoding["attention_mask"]
start_scores, end_scores = model(input_ids, attention_mask=attention_mask)
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
# output => democratized NLP
```
## Usage with HF `pipleine`
```python
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
ckpt = "mrm8488/longformer-base-4096-finetuned-squadv2"
tokenizer = AutoTokenizer.from_pretrained(ckpt)
model = AutoModelForQuestionAnswering.from_pretrained(ckpt)
qa = pipeline("question-answering", model=model, tokenizer=tokenizer)
text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this."
question = "What has Huggingface done?"
qa({"question": question, "context": text})
```
If given the same context we ask something that is not there, the output for **no answer** will be ```<s>```
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)
> Made with <span style="color: #e25555;">&hearts;</span> in Spain
[![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/Y8Y3VYYE)