Quantized bigscience/bloom 1B3 with 8-bit weights
Heavily inspired by Hivemind's GPT-J-6B with 8-bit weights, this is a version of bigscience/bloom a ~1 billion parameters language model that you run and fine-tune with less memory.
Here, we also apply LoRA (Low Rank Adaptation) to reduce model size.
How to fine-tune
TBA
How to use
This model can be used by adapting Bloom original implementation. This is an adaptation from Hivemind's GPT-J 8-bit:
import transformers
import torch
import torch.nn as nn
import torch.nn.functional as F
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
from typing import Tuple
from torch.cuda.amp import custom_fwd, custom_bwd
class FrozenBNBLinear(nn.Module):
def __init__(self, weight, absmax, code, bias=None):
assert isinstance(bias, nn.Parameter) or bias is None
super().__init__()
self.out_features, self.in_features = weight.shape
self.register_buffer("weight", weight.requires_grad_(False))
self.register_buffer("absmax", absmax.requires_grad_(False))
self.register_buffer("code", code.requires_grad_(False))
self.adapter = None
self.bias = bias
def forward(self, input):
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
if self.adapter:
output += self.adapter(input)
return output
@classmethod
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
weights_int8, state = quantize_blockise_lowmemory(linear.weight)
return cls(weights_int8, *state, linear.bias)
def __repr__(self):
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
class DequantizeAndLinear(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
ctx.save_for_backward(input, weights_quantized, absmax, code)
ctx._has_bias = bias is not None
return F.linear(input, weights_deq, bias)
@staticmethod
@custom_bwd
def backward(ctx, grad_output: torch.Tensor):
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
input, weights_quantized, absmax, code = ctx.saved_tensors
# grad_output: [*batch, out_features]
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
grad_input = grad_output @ weights_deq
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
return grad_input, None, None, None, grad_bias
class FrozenBNBEmbedding(nn.Module):
def __init__(self, weight, absmax, code):
super().__init__()
self.num_embeddings, self.embedding_dim = weight.shape
self.register_buffer("weight", weight.requires_grad_(False))
self.register_buffer("absmax", absmax.requires_grad_(False))
self.register_buffer("code", code.requires_grad_(False))
self.adapter = None
def forward(self, input, **kwargs):
with torch.no_grad():
# note: both quantuized weights and input indices are *not* differentiable
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
output = F.embedding(input, weight_deq, **kwargs)
if self.adapter:
output += self.adapter(input)
return output
@classmethod
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
return cls(weights_int8, *state)
def __repr__(self):
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
assert chunk_size % 4096 == 0
code = None
chunks = []
absmaxes = []
flat_tensor = matrix.view(-1)
for i in range((matrix.numel() - 1) // chunk_size + 1):
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
chunks.append(quantized_chunk)
absmaxes.append(absmax_chunk)
matrix_i8 = torch.cat(chunks).reshape_as(matrix)
absmax = torch.cat(absmaxes)
return matrix_i8, (absmax, code)
def convert_to_int8(model):
"""Convert linear and embedding modules to 8-bit with optional adapters"""
for module in list(model.modules()):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
print(name, child)
setattr(
module,
name,
FrozenBNBLinear(
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
code=torch.zeros(256),
bias=child.bias,
),
)
elif isinstance(child, nn.Embedding):
setattr(
module,
name,
FrozenBNBEmbedding(
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
code=torch.zeros(256),
)
)
class BloomBlock(transformers.models.bloom.modeling_bloom.BloomBlock):
def __init__(self, config, layer_number=None):
super().__init__(config, layer_number)
convert_to_int8(self.self_attention)
convert_to_int8(self.mlp)
class BloomModel(transformers.models.bloom.modeling_bloom.BloomModel):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self)
class BloomForCausalLM(transformers.models.bloom.modeling_bloom.BloomForCausalLM):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self)
transformers.models.bloom.modeling_bloom.BloomBlock = BloomBlock
model_name = 'mrm8488/bloom-1b3-8bit'
model = BloomForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
tokenizer = BloomTokenizerFast.from_pretrained(model_name)
prompt = tokenizer("Given a table named salaries and columns id, created_at, salary, age. Creates a SQL to answer What is the average salary for 22 years old:", return_tensors='pt')
out = model.generate(**prompt, min_length=10, do_sample=True)
tokenizer.decode(out[0])
- Downloads last month
- 19