|
--- |
|
datasets: |
|
- Open-Orca/OpenOrca |
|
- openchat/openchat_sharegpt4_dataset |
|
- LDJnr/Puffin |
|
- ehartford/samantha-data |
|
- OpenAssistant/oasst1 |
|
- jondurbin/airoboros-gpt4-1.4.1 |
|
exported_from: ICBU-NPU/FashionGPT-70B-V1.1 |
|
language: |
|
- en |
|
library_name: transformers |
|
license: llama2 |
|
quantized_by: mradermacher |
|
--- |
|
## About |
|
|
|
<!-- ### quantize_version: 1 --> |
|
<!-- ### output_tensor_quantised: 1 --> |
|
<!-- ### convert_type: --> |
|
<!-- ### vocab_type: --> |
|
weighted/imatrix quants of https://huggingface.co/ICBU-NPU/FashionGPT-70B-V1.1 |
|
|
|
<!-- provided-files --> |
|
static quants are available at https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-GGUF |
|
## Usage |
|
|
|
If you are unsure how to use GGUF files, refer to one of [TheBloke's |
|
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for |
|
more details, including on how to concatenate multi-part files. |
|
|
|
## Provided Quants |
|
|
|
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) |
|
|
|
| Link | Type | Size/GB | Notes | |
|
|:-----|:-----|--------:|:------| |
|
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-IQ2_M.gguf) | i1-IQ2_M | 23.3 | | |
|
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.7 | lower quality | |
|
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.4 | IQ3_S probably better | |
|
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.2 | IQ3_M probably better | |
|
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.9 | | |
|
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.3 | optimal size/speed/quality | |
|
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.5 | fast, recommended | |
|
| [PART 1](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 56.7 | practically like static Q6_K | |
|
|
|
|
|
Here is a handy graph by ikawrakow comparing some lower-quality quant |
|
types (lower is better): |
|
|
|
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) |
|
|
|
And here are Artefact2's thoughts on the matter: |
|
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 |
|
|
|
## Thanks |
|
|
|
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting |
|
me use its servers and providing upgrades to my workstation to enable |
|
this work in my free time. |
|
|
|
<!-- end --> |
|
|