Edit model card

ICU_Returns_COReClinicalBioBERT

This model is a fine-tuned version of bvanaken/CORe-clinical-outcome-biobert-v1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8391
  • F1:: 0.7210
  • Roc Auc: 0.7335
  • Precision with 0:: 0.9048
  • Precision with 1:: 0.6641
  • Recall with 0:: 0.5220
  • Recal with 1:: 0.9451
  • Accuracy:: 0.7335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss F1: Roc Auc Precision with 0: Precision with 1: Recall with 0: Recal with 1: Accuracy:
No log 1.0 46 0.6908 0.4103 0.5330 0.875 0.5172 0.0769 0.9890 0.5330
No log 2.0 92 0.6839 0.4361 0.5357 0.7241 0.5194 0.1154 0.9560 0.5357
No log 3.0 138 0.7113 0.4827 0.5549 0.7174 0.5314 0.1813 0.9286 0.5549
No log 4.0 184 0.6089 0.6674 0.6703 0.7095 0.6435 0.5769 0.7637 0.6703
No log 5.0 230 0.6138 0.6533 0.6731 0.8316 0.6171 0.4341 0.9121 0.6731
No log 6.0 276 0.6892 0.7153 0.7253 0.8596 0.664 0.5385 0.9121 0.7253
No log 7.0 322 1.0376 0.6385 0.6703 0.9189 0.6069 0.3736 0.9670 0.6703
No log 8.0 368 1.1796 0.7088 0.7225 0.8932 0.6552 0.5055 0.9396 0.7225
No log 9.0 414 1.0800 0.7749 0.7802 0.9048 0.7143 0.6264 0.9341 0.7802
No log 10.0 460 2.0318 0.6717 0.6951 0.9176 0.6272 0.4286 0.9615 0.6951
0.3613 11.0 506 1.9762 0.6796 0.7005 0.9101 0.6327 0.4451 0.9560 0.7005
0.3613 12.0 552 1.7367 0.7469 0.7555 0.9043 0.6867 0.5714 0.9396 0.7555
0.3613 13.0 598 1.8391 0.7210 0.7335 0.9048 0.6641 0.5220 0.9451 0.7335

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for moro01525/ICU_Returns_COReClinicalBioBERT

Finetuned
(1)
this model