metadata
base_model: google/gemma-2-9b-it
datasets:
- princeton-nlp/gemma2-ultrafeedback-armorm
license: mit
tags:
- alignment-handbook
- generated_from_trainer
- mlx
model-index:
- name: princeton-nlp/gemma-2-9b-it-SimPO
results: []
mlx-community/gemma-2-9b-it-SimPO
The Model mlx-community/gemma-2-9b-it-SimPO was converted to MLX format from princeton-nlp/gemma-2-9b-it-SimPO using mlx-lm version 0.18.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/gemma-2-9b-it-SimPO")
response = generate(model, tokenizer, prompt="hello", verbose=True)