FRA_party_tweets_climate
This model is a fine-tuned version of camembert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0826
- Accuracy: 0.9857
- F1 Macro: 0.9853
- Accuracy Balanced: 0.9847
- F1 Micro: 0.9857
- Precision Macro: 0.9858
- Recall Macro: 0.9847
- Precision Micro: 0.9857
- Recall Micro: 0.9857
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 80
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.2428 | 1.0 | 628 | 0.0792 | 0.9841 | 0.9836 | 0.9831 | 0.9841 | 0.9842 | 0.9831 | 0.9841 | 0.9841 |
0.058 | 2.0 | 1256 | 0.0925 | 0.9809 | 0.9804 | 0.9804 | 0.9809 | 0.9804 | 0.9804 | 0.9809 | 0.9809 |
0.0429 | 3.0 | 1884 | 0.0785 | 0.9857 | 0.9852 | 0.9846 | 0.9857 | 0.9859 | 0.9846 | 0.9857 | 0.9857 |
0.024 | 4.0 | 2512 | 0.0829 | 0.9857 | 0.9853 | 0.9847 | 0.9857 | 0.9858 | 0.9847 | 0.9857 | 0.9857 |
0.0202 | 5.0 | 3140 | 0.0826 | 0.9857 | 0.9853 | 0.9847 | 0.9857 | 0.9858 | 0.9847 | 0.9857 | 0.9857 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mljn/FRA_party_tweets_climate
Base model
almanach/camembert-base