π¦ποΈ Alpagasus-2-7b
π Paper | π Blog | π» Code | π€ Model (unofficial)
This is a Llama-2-7b-hf
model fine-tuned using QLoRA (4-bit precision) on the mlabonne/alpagasus
dataset, which is a high-quality subset (9k samples) of the Alpaca dataset (52k samples).
π§ Training
It was trained on an RTX 3090 using the ππ§TinyTuner. Parameters:
# Dataset
dataset_name: mlabonne/alpagasus
prompt_template: alpaca
max_seq_length: 512
val_set_size: 0.01
# Loading
load_in_8bit: false
load_in_4bit: true
bf16: true
fp16: false
tf32: true
# Lora
adapter: qlora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.1
lora_target_modules:
- q_proj
- v_proj
lora_fan_in_fan_out:
# Training
learning_rate: 0.00002
micro_batch_size: 24
gradient_accumulation_steps: 1
num_epochs: 3
lr_scheduler_type: cosine
optim: paged_adamw_32bit
group_by_length: true
warmup_ratio: 0.03
eval_steps: 0.01
save_strategy: epoch
logging_steps: 1
weight_decay: 0
max_grad_norm:
max_steps: -1
gradient_checkpointing: true
# QLoRA
bnb_4bit_compute_dtype: float16
bnb_4bit_quant_type: nf4
bnb_4bit_use_double_quant: false
π» Usage
# pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/alpagasus-2-7b"
prompt = "What is a large language model?"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
f'### Instruction: {prompt}',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.