OmniBeagle-7B / README.md
mlabonne's picture
Adding Evaluation Results (#3)
75ecebe verified
|
raw
history blame
4.97 kB
metadata
license: cc-by-nc-4.0
tags:
  - merge
  - mergekit
  - lazymergekit
base_model:
  - shadowml/BeagleSempra-7B
  - shadowml/BeagSake-7B
  - shadowml/WestBeagle-7B
model-index:
  - name: OmniBeagle-7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 72.61
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/OmniBeagle-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 88.93
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/OmniBeagle-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.8
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/OmniBeagle-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 74.45
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/OmniBeagle-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 83.11
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/OmniBeagle-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.05
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/OmniBeagle-7B
          name: Open LLM Leaderboard

OmniBeagle-7B

OmniBeagle-7B is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
    # no parameters necessary for base model
  - model: shadowml/BeagleSempra-7B
    parameters:
      density: 0.65
      weight: 0.4
  - model: shadowml/BeagSake-7B
    parameters:
      density: 0.6
      weight: 0.35
  - model: shadowml/WestBeagle-7B
    parameters:
      density: 0.6
      weight: 0.35
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: float16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/OmniBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.66
AI2 Reasoning Challenge (25-Shot) 72.61
HellaSwag (10-Shot) 88.93
MMLU (5-Shot) 64.80
TruthfulQA (0-shot) 74.45
Winogrande (5-shot) 83.11
GSM8k (5-shot) 70.05