metadata
library_name: transformers
tags:
- mergekit
- merge
base_model:
- NousResearch/Hermes-3-Llama-3.1-70B
- mlabonne/Llama-3-70B-Instruct-abliterated-LORA
model-index:
- name: Hermes-3-Llama-3.1-70B-lorablated
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 71.44
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 52.34
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 13.82
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.2
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 22.02
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 41.37
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
name: Open LLM Leaderboard
🪽 Hermes-3-Llama-3.1-70B-lorablated
This is an uncensored version of NousResearch/Hermes-3-Llama-3.1-70B using lorablation.
You can see in the following example how Hermes 3 refuses to answer a legitimate question while the abliterated model complies:
The recipe is based on @grimjim's grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter (special thanks):
- Extraction: We extract a LoRA adapter by comparing two models: a censored Llama 3 (meta-llama/Meta-Llama-3-70B-Instruct) and an abliterated Llama 3.1 (failspy/Meta-Llama-3.1-70B-Instruct-abliterated).
- Merge: We merge this new LoRA adapter using task arithmetic to the censored NousResearch/Hermes-3-Llama-3.1-70B to abliterate it.
See this article to learn more about abliteration.
⚡ Quantization
🧩 Configuration
This model was merged using the task arithmetic merge method using NousResearch/Hermes-3-Llama-3.1-70B + Llama-3.1-70B-Instruct-abliterated-LORA as a base.
The following YAML configuration was used to produce this model:
base_model: NousResearch/Hermes-3-Llama-3.1-70B+mlabonne/Llama-3.1-70B-Instruct-abliterated-LORA
dtype: bfloat16
merge_method: task_arithmetic
parameters:
normalize: false
slices:
- sources:
- layer_range: [0, 32]
model: NousResearch/Hermes-3-Llama-3.1-70B+mlabonne/Llama-3.1-70B-Instruct-abliterated-LORA
parameters:
weight: 1.0
You can reproduce this model using the following commands:
# Setup
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit && pip install -e .
pip install bitsandbytes
# Merge using previous config
mergekit-yaml config.yaml Hermes-3-Llama-3.1-70B-lorablated --allow-crimes --lora-merge-cache=./cache
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 35.70 |
IFEval (0-Shot) | 71.44 |
BBH (3-Shot) | 52.34 |
MATH Lvl 5 (4-Shot) | 13.82 |
GPQA (0-shot) | 13.20 |
MuSR (0-shot) | 22.02 |
MMLU-PRO (5-shot) | 41.37 |