pandora-s's picture
Update README.md
6b7e0ce verified
|
raw
history blame
4.79 kB
metadata
license: apache-2.0
tags:
  - finetuned
pipeline_tag: text-generation
inference: true
widget:
  - messages:
      - role: user
        content: What is your favorite condiment?

license: apache-2.0 language: - en

Model Card for Mistral-7B-Instruct-v0.1

The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the Mistral-7B-v0.1 generative text model using a variety of publicly available conversation datasets.

For full details of this model please read our paper and release blog post.

Mistral-7B-Instruct-v0.1 has the following characteristics:

  • 7.3B parameters
  • Byte-fallback BPE tokenizer
  • Grouped-Query Attention
  • 8k context window
  • 4k Sliding-Window Attention
  • 32000 vocab size

How to use

It is recommended to use mistralai/Mistral-7B-Instruct-v0.1 with mistral_inference and mistral_common. For HF transformers code snippets, please keep scrolling.

Generate with mistral_inference and mistral_common

Install dependencies

pip install mistral_inference mistral_common

Download model

from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.1')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model"], local_dir=mistral_models_path)

Chat

After installing mistral_inference, a mistral-chat CLI command should be available in your environment. You can chat with the model using

mistral-chat $HOME/mistral_models/7B-Instruct-v0.1 --instruct --max_tokens 256

Instruct following

from mistral_inference.model import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model")
# tokenizer = MistralTokenizer.v1()

model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

print(result)

Generate with transformers

Install dependencies

pip install transformers

Instruct following

from transformers import AutoModelForCausalLM, AutoTokenizer
 
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
model.to("cuda")

tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

messages_prompt = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True,
)

inputs = tokenizer(tool_use_prompt, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=1000)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(result)

Or:

from transformers import pipeline

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.1")
result = chatbot(messages)

print(result)

Limitations

The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.