update_readme_example
#5
by
haipingwu
- opened
README.md
CHANGED
@@ -85,11 +85,11 @@ processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_re
|
|
85 |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
86 |
image = Image.open(requests.get(url, stream=True).raw)
|
87 |
|
88 |
-
def run_example(
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
94 |
generated_ids = model.generate(
|
95 |
input_ids=inputs["input_ids"],
|
@@ -99,7 +99,7 @@ def run_example(prompt, text_input=None):
|
|
99 |
)
|
100 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
101 |
|
102 |
-
parsed_answer = processor.post_process_generation(generated_text, task=
|
103 |
|
104 |
print(parsed_answer)
|
105 |
```
|
@@ -113,7 +113,7 @@ Here are the tasks `Florence-2` could perform:
|
|
113 |
### OCR
|
114 |
|
115 |
```python
|
116 |
-
prompt = <OCR>
|
117 |
run_example(prompt)
|
118 |
```
|
119 |
|
@@ -121,25 +121,25 @@ run_example(prompt)
|
|
121 |
OCR with region output format:
|
122 |
{'\<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}}
|
123 |
```python
|
124 |
-
prompt = <OCR_WITH_REGION>
|
125 |
run_example(prompt)
|
126 |
```
|
127 |
|
128 |
### Caption
|
129 |
```python
|
130 |
-
prompt = <CAPTION>
|
131 |
run_example(prompt)
|
132 |
```
|
133 |
|
134 |
### Detailed Caption
|
135 |
```python
|
136 |
-
prompt = <DETAILED_CAPTION>
|
137 |
run_example(prompt)
|
138 |
```
|
139 |
|
140 |
### More Detailed Caption
|
141 |
```python
|
142 |
-
prompt = <MORE_DETAILED_CAPTION>
|
143 |
run_example(prompt)
|
144 |
```
|
145 |
|
@@ -150,7 +150,7 @@ OD results format:
|
|
150 |
'labels': ['label1', 'label2', ...]} }
|
151 |
|
152 |
```python
|
153 |
-
prompt = <OD>
|
154 |
run_example(prompt)
|
155 |
```
|
156 |
|
@@ -159,7 +159,7 @@ Dense region caption results format:
|
|
159 |
{'\<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...],
|
160 |
'labels': ['label1', 'label2', ...]} }
|
161 |
```python
|
162 |
-
prompt = <DENSE_REGION_CAPTION>
|
163 |
run_example(prompt)
|
164 |
```
|
165 |
|
@@ -168,7 +168,7 @@ Dense region caption results format:
|
|
168 |
{'\<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...],
|
169 |
'labels': ['', '', ...]}}
|
170 |
```python
|
171 |
-
prompt = <REGION_PROPOSAL>
|
172 |
run_example(prompt)
|
173 |
```
|
174 |
|
@@ -178,7 +178,7 @@ caption to phrase grounding task requires additional text input, i.e. caption.
|
|
178 |
Caption to phrase grounding results format:
|
179 |
{'\<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}}
|
180 |
```python
|
181 |
-
task_prompt =
|
182 |
results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.")
|
183 |
```
|
184 |
|
|
|
85 |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
86 |
image = Image.open(requests.get(url, stream=True).raw)
|
87 |
|
88 |
+
def run_example(task_prompt, text_input=None):
|
89 |
+
if text_input is None:
|
90 |
+
prompt = task_prompt
|
91 |
+
else:
|
92 |
+
prompt = task_prompt + text_input
|
93 |
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
94 |
generated_ids = model.generate(
|
95 |
input_ids=inputs["input_ids"],
|
|
|
99 |
)
|
100 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
101 |
|
102 |
+
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
103 |
|
104 |
print(parsed_answer)
|
105 |
```
|
|
|
113 |
### OCR
|
114 |
|
115 |
```python
|
116 |
+
prompt = "<OCR>"
|
117 |
run_example(prompt)
|
118 |
```
|
119 |
|
|
|
121 |
OCR with region output format:
|
122 |
{'\<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}}
|
123 |
```python
|
124 |
+
prompt = "<OCR_WITH_REGION>"
|
125 |
run_example(prompt)
|
126 |
```
|
127 |
|
128 |
### Caption
|
129 |
```python
|
130 |
+
prompt = "<CAPTION>"
|
131 |
run_example(prompt)
|
132 |
```
|
133 |
|
134 |
### Detailed Caption
|
135 |
```python
|
136 |
+
prompt = "<DETAILED_CAPTION>"
|
137 |
run_example(prompt)
|
138 |
```
|
139 |
|
140 |
### More Detailed Caption
|
141 |
```python
|
142 |
+
prompt = "<MORE_DETAILED_CAPTION>"
|
143 |
run_example(prompt)
|
144 |
```
|
145 |
|
|
|
150 |
'labels': ['label1', 'label2', ...]} }
|
151 |
|
152 |
```python
|
153 |
+
prompt = "<OD>"
|
154 |
run_example(prompt)
|
155 |
```
|
156 |
|
|
|
159 |
{'\<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...],
|
160 |
'labels': ['label1', 'label2', ...]} }
|
161 |
```python
|
162 |
+
prompt = "<DENSE_REGION_CAPTION>"
|
163 |
run_example(prompt)
|
164 |
```
|
165 |
|
|
|
168 |
{'\<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...],
|
169 |
'labels': ['', '', ...]}}
|
170 |
```python
|
171 |
+
prompt = "<REGION_PROPOSAL>"
|
172 |
run_example(prompt)
|
173 |
```
|
174 |
|
|
|
178 |
Caption to phrase grounding results format:
|
179 |
{'\<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}}
|
180 |
```python
|
181 |
+
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
|
182 |
results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.")
|
183 |
```
|
184 |
|