# Fast-Inference with Ctranslate2
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
quantized version of setu4993/LaBSE
pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1
# from transformers import AutoTokenizer
model_name = "michaelfeil/ct2fast-LaBSE"
model_name_orig="setu4993/LaBSE"
from hf_hub_ctranslate2 import EncoderCT2fromHfHub
model = EncoderCT2fromHfHub(
# load in int8 on CUDA
model_name_or_path=model_name,
device="cuda",
compute_type="int8_float16"
)
outputs = model.generate(
text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
max_length=64,
) # perform downstream tasks on outputs
outputs["pooler_output"]
outputs["last_hidden_state"]
outputs["attention_mask"]
# alternative, use SentenceTransformer Mix-In
# for end-to-end Sentence embeddings generation
# (not pulling from this CT2fast-HF repo)
from hf_hub_ctranslate2 import CT2SentenceTransformer
model = CT2SentenceTransformer(
model_name_orig, compute_type="int8_float16", device="cuda"
)
embeddings = model.encode(
["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=True,
)
print(embeddings.shape, embeddings)
scores = (embeddings @ embeddings.T) * 100
# Hint: you can also host this code via REST API and
# via github.com/michaelfeil/infinity
Checkpoint compatible to ctranslate2>=3.17.1 and hf-hub-ctranslate2>=2.12.0
compute_type=int8_float16
fordevice="cuda"
compute_type=int8
fordevice="cpu"
Converted on 2023-10-13 using
LLama-2 -> removed <pad> token.
Licence and other remarks:
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
Original description
LaBSE
Model description
Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model trained for sentence embedding for 109 languages. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval.
- Model: HuggingFace's model hub.
- Paper: arXiv.
- Original model: TensorFlow Hub.
- Blog post: Google AI Blog.
- Conversion from TensorFlow to PyTorch: GitHub.
This is migrated from the v2 model on the TF Hub, which uses dict-based input. The embeddings produced by both the versions of the model are equivalent.
Usage
Using the model:
import torch
from transformers import BertModel, BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE")
model = BertModel.from_pretrained("setu4993/LaBSE")
model = model.eval()
english_sentences = [
"dog",
"Puppies are nice.",
"I enjoy taking long walks along the beach with my dog.",
]
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True)
with torch.no_grad():
english_outputs = model(**english_inputs)
To get the sentence embeddings, use the pooler output:
english_embeddings = english_outputs.pooler_output
Output for other languages:
italian_sentences = [
"cane",
"I cuccioli sono carini.",
"Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.",
]
japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"]
italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True)
japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True)
with torch.no_grad():
italian_outputs = model(**italian_inputs)
japanese_outputs = model(**japanese_inputs)
italian_embeddings = italian_outputs.pooler_output
japanese_embeddings = japanese_outputs.pooler_output
For similarity between sentences, an L2-norm is recommended before calculating the similarity:
import torch.nn.functional as F
def similarity(embeddings_1, embeddings_2):
normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
return torch.matmul(
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
)
print(similarity(english_embeddings, italian_embeddings))
print(similarity(english_embeddings, japanese_embeddings))
print(similarity(italian_embeddings, japanese_embeddings))
Details
Details about data, training, evaluation and performance metrics are available in the original paper.
BibTeX entry and citation info
@misc{feng2020languageagnostic,
title={Language-agnostic BERT Sentence Embedding},
author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang},
year={2020},
eprint={2007.01852},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4