Text-to-Image
Diffusers
Safetensors
English
mhdang's picture
Update README.md
5723975
|
raw
history blame
1.71 kB
metadata
datasets:
  - yuvalkirstain/pickapic_v2
language:
  - en
library_name: diffusers
pipeline_tag: text-to-image

Diffusion Model Alignment Using Direct Preference Optimization

row01

Direct Preference Optimization (DPO) for text-to-image diffusion models is a method to align diffusion models to text human preferences by directly optimizing on human comparison data. Please check our paper at Diffusion Model Alignment Using Direct Preference Optimization.

This model is fine-tuned from stable-diffusion-xl-base-1.0 on offline human preference data pickapic_v2.

Code

Code will come soon!!!

SD1.5

We also have a model finedtuned from stable-diffusion-v1-5 available at dpo-sd1.5-text2image-v1.

A quick example

from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel
import torch

# load pipeline
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")

# load finetuned model
unet_id = "mhdang/dpo-sdxl-text2image-v1"
unet = UNet2DConditionModel.from_pretrained(unet_id, subfolder="unet", torch_dtype=torch.float16)
pipe.unet = unet
pipe = pipe.to("cuda")

prompt = "Two cats playing chess on a tree branch"
image = pipe(prompt, guidance_scale=7.5).images[0].resize((512,512))
    
image.save("cats_playing_chess.png")

More details coming soon.