File size: 13,832 Bytes
3ed2861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: example.pkl
widget:
  structuredData:
    'Unnamed: 32':
    - .nan
    - .nan
    - .nan
    area_mean:
    - 481.9
    - 1130.0
    - 748.9
    area_se:
    - 30.29
    - 96.05
    - 48.31
    area_worst:
    - 677.9
    - 1866.0
    - 1156.0
    compactness_mean:
    - 0.1058
    - 0.1029
    - 0.1223
    compactness_se:
    - 0.01911
    - 0.01652
    - 0.01484
    compactness_worst:
    - 0.2378
    - 0.2336
    - 0.2394
    concave points_mean:
    - 0.03821
    - 0.07951
    - 0.08087
    concave points_se:
    - 0.01037
    - 0.0137
    - 0.01093
    concave points_worst:
    - 0.1015
    - 0.1789
    - 0.1514
    concavity_mean:
    - 0.08005
    - 0.108
    - 0.1466
    concavity_se:
    - 0.02701
    - 0.02269
    - 0.02813
    concavity_worst:
    - 0.2671
    - 0.2687
    - 0.3791
    fractal_dimension_mean:
    - 0.06373
    - 0.05461
    - 0.05796
    fractal_dimension_se:
    - 0.003586
    - 0.001698
    - 0.002461
    fractal_dimension_worst:
    - 0.0875
    - 0.06589
    - 0.08019
    id:
    - 87930
    - 859575
    - 8670
    perimeter_mean:
    - 81.09
    - 123.6
    - 101.7
    perimeter_se:
    - 2.497
    - 5.486
    - 3.094
    perimeter_worst:
    - 96.05
    - 165.9
    - 124.9
    radius_mean:
    - 12.47
    - 18.94
    - 15.46
    radius_se:
    - 0.3961
    - 0.7888
    - 0.4743
    radius_worst:
    - 14.97
    - 24.86
    - 19.26
    smoothness_mean:
    - 0.09965
    - 0.09009
    - 0.1092
    smoothness_se:
    - 0.006953
    - 0.004444
    - 0.00624
    smoothness_worst:
    - 0.1426
    - 0.1193
    - 0.1546
    symmetry_mean:
    - 0.1925
    - 0.1582
    - 0.1931
    symmetry_se:
    - 0.01782
    - 0.01386
    - 0.01397
    symmetry_worst:
    - 0.3014
    - 0.2551
    - 0.2837
    texture_mean:
    - 18.6
    - 21.31
    - 19.48
    texture_se:
    - 1.044
    - 0.7975
    - 0.7859
    texture_worst:
    - 24.64
    - 26.58
    - 26.0
---

# Model description

[More Information Needed]

## Intended uses & limitations

This model is not ready to be used in production.

## Training Procedure

### Hyperparameters

The model is trained with below hyperparameters.

<details>
<summary> Click to expand </summary>

| Hyperparameter           | Value                                                                                         |
|--------------------------|-----------------------------------------------------------------------------------------------|
| memory                   |                                                                                               |
| steps                    | [('imputer', SimpleImputer()), ('scaler', StandardScaler()), ('model', LogisticRegression())] |
| verbose                  | False                                                                                         |
| imputer                  | SimpleImputer()                                                                               |
| scaler                   | StandardScaler()                                                                              |
| model                    | LogisticRegression()                                                                          |
| imputer__add_indicator   | False                                                                                         |
| imputer__copy            | True                                                                                          |
| imputer__fill_value      |                                                                                               |
| imputer__missing_values  | nan                                                                                           |
| imputer__strategy        | mean                                                                                          |
| imputer__verbose         | 0                                                                                             |
| scaler__copy             | True                                                                                          |
| scaler__with_mean        | True                                                                                          |
| scaler__with_std         | True                                                                                          |
| model__C                 | 1.0                                                                                           |
| model__class_weight      |                                                                                               |
| model__dual              | False                                                                                         |
| model__fit_intercept     | True                                                                                          |
| model__intercept_scaling | 1                                                                                             |
| model__l1_ratio          |                                                                                               |
| model__max_iter          | 100                                                                                           |
| model__multi_class       | auto                                                                                          |
| model__n_jobs            |                                                                                               |
| model__penalty           | l2                                                                                            |
| model__random_state      |                                                                                               |
| model__solver            | lbfgs                                                                                         |
| model__tol               | 0.0001                                                                                        |
| model__verbose           | 0                                                                                             |
| model__warm_start        | False                                                                                         |

</details>

### Model Plot

The model plot is below.

<style>#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b {color: black;background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b pre{padding: 0;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-toggleable {background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator:hover {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-item {z-index: 1;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item:only-child::after {width: 0;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-text-repr-fallback {display: none;}</style><div id="sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),(&#x27;model&#x27;, LogisticRegression())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6aee50d2-d0d7-437e-8e9b-bd1121de94e7" type="checkbox" ><label for="6aee50d2-d0d7-437e-8e9b-bd1121de94e7" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),(&#x27;model&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ac5b7f88-9a16-4c90-8fcb-2a4f833cadf1" type="checkbox" ><label for="ac5b7f88-9a16-4c90-8fcb-2a4f833cadf1" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="65ce6721-e323-4189-a9bd-e373e248f0f7" type="checkbox" ><label for="65ce6721-e323-4189-a9bd-e373e248f0f7" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2328c6c4-413e-46ed-b597-1b88227e45a5" type="checkbox" ><label for="2328c6c4-413e-46ed-b597-1b88227e45a5" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>

## Evaluation Results

You can find the details about evaluation process and the evaluation results.

| Metric   |    Value |
|----------|----------|
| accuracy | 0.982456 |
| f1 score | 0.982456 |

# How to Get Started with the Model

[More Information Needed]

# Model Card Authors

This model card is written by following authors:

[More Information Needed]

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
[More Information Needed]
```

# Confusion Matrix

![Confusion Matrix](path-to-confusion-matrix.png)