pushing files to the repo from the example!
Browse files- README.md +234 -0
- config.json +208 -0
- confusion_matrix.png +0 -0
- example.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: sklearn
|
4 |
+
tags:
|
5 |
+
- sklearn
|
6 |
+
- skops
|
7 |
+
- tabular-classification
|
8 |
+
model_file: example.pkl
|
9 |
+
widget:
|
10 |
+
structuredData:
|
11 |
+
'Unnamed: 32':
|
12 |
+
- .nan
|
13 |
+
- .nan
|
14 |
+
- .nan
|
15 |
+
area_mean:
|
16 |
+
- 481.9
|
17 |
+
- 1130.0
|
18 |
+
- 748.9
|
19 |
+
area_se:
|
20 |
+
- 30.29
|
21 |
+
- 96.05
|
22 |
+
- 48.31
|
23 |
+
area_worst:
|
24 |
+
- 677.9
|
25 |
+
- 1866.0
|
26 |
+
- 1156.0
|
27 |
+
compactness_mean:
|
28 |
+
- 0.1058
|
29 |
+
- 0.1029
|
30 |
+
- 0.1223
|
31 |
+
compactness_se:
|
32 |
+
- 0.01911
|
33 |
+
- 0.01652
|
34 |
+
- 0.01484
|
35 |
+
compactness_worst:
|
36 |
+
- 0.2378
|
37 |
+
- 0.2336
|
38 |
+
- 0.2394
|
39 |
+
concave points_mean:
|
40 |
+
- 0.03821
|
41 |
+
- 0.07951
|
42 |
+
- 0.08087
|
43 |
+
concave points_se:
|
44 |
+
- 0.01037
|
45 |
+
- 0.0137
|
46 |
+
- 0.01093
|
47 |
+
concave points_worst:
|
48 |
+
- 0.1015
|
49 |
+
- 0.1789
|
50 |
+
- 0.1514
|
51 |
+
concavity_mean:
|
52 |
+
- 0.08005
|
53 |
+
- 0.108
|
54 |
+
- 0.1466
|
55 |
+
concavity_se:
|
56 |
+
- 0.02701
|
57 |
+
- 0.02269
|
58 |
+
- 0.02813
|
59 |
+
concavity_worst:
|
60 |
+
- 0.2671
|
61 |
+
- 0.2687
|
62 |
+
- 0.3791
|
63 |
+
fractal_dimension_mean:
|
64 |
+
- 0.06373
|
65 |
+
- 0.05461
|
66 |
+
- 0.05796
|
67 |
+
fractal_dimension_se:
|
68 |
+
- 0.003586
|
69 |
+
- 0.001698
|
70 |
+
- 0.002461
|
71 |
+
fractal_dimension_worst:
|
72 |
+
- 0.0875
|
73 |
+
- 0.06589
|
74 |
+
- 0.08019
|
75 |
+
id:
|
76 |
+
- 87930
|
77 |
+
- 859575
|
78 |
+
- 8670
|
79 |
+
perimeter_mean:
|
80 |
+
- 81.09
|
81 |
+
- 123.6
|
82 |
+
- 101.7
|
83 |
+
perimeter_se:
|
84 |
+
- 2.497
|
85 |
+
- 5.486
|
86 |
+
- 3.094
|
87 |
+
perimeter_worst:
|
88 |
+
- 96.05
|
89 |
+
- 165.9
|
90 |
+
- 124.9
|
91 |
+
radius_mean:
|
92 |
+
- 12.47
|
93 |
+
- 18.94
|
94 |
+
- 15.46
|
95 |
+
radius_se:
|
96 |
+
- 0.3961
|
97 |
+
- 0.7888
|
98 |
+
- 0.4743
|
99 |
+
radius_worst:
|
100 |
+
- 14.97
|
101 |
+
- 24.86
|
102 |
+
- 19.26
|
103 |
+
smoothness_mean:
|
104 |
+
- 0.09965
|
105 |
+
- 0.09009
|
106 |
+
- 0.1092
|
107 |
+
smoothness_se:
|
108 |
+
- 0.006953
|
109 |
+
- 0.004444
|
110 |
+
- 0.00624
|
111 |
+
smoothness_worst:
|
112 |
+
- 0.1426
|
113 |
+
- 0.1193
|
114 |
+
- 0.1546
|
115 |
+
symmetry_mean:
|
116 |
+
- 0.1925
|
117 |
+
- 0.1582
|
118 |
+
- 0.1931
|
119 |
+
symmetry_se:
|
120 |
+
- 0.01782
|
121 |
+
- 0.01386
|
122 |
+
- 0.01397
|
123 |
+
symmetry_worst:
|
124 |
+
- 0.3014
|
125 |
+
- 0.2551
|
126 |
+
- 0.2837
|
127 |
+
texture_mean:
|
128 |
+
- 18.6
|
129 |
+
- 21.31
|
130 |
+
- 19.48
|
131 |
+
texture_se:
|
132 |
+
- 1.044
|
133 |
+
- 0.7975
|
134 |
+
- 0.7859
|
135 |
+
texture_worst:
|
136 |
+
- 24.64
|
137 |
+
- 26.58
|
138 |
+
- 26.0
|
139 |
+
---
|
140 |
+
|
141 |
+
# Model description
|
142 |
+
|
143 |
+
[More Information Needed]
|
144 |
+
|
145 |
+
## Intended uses & limitations
|
146 |
+
|
147 |
+
This model is not ready to be used in production.
|
148 |
+
|
149 |
+
## Training Procedure
|
150 |
+
|
151 |
+
### Hyperparameters
|
152 |
+
|
153 |
+
The model is trained with below hyperparameters.
|
154 |
+
|
155 |
+
<details>
|
156 |
+
<summary> Click to expand </summary>
|
157 |
+
|
158 |
+
| Hyperparameter | Value |
|
159 |
+
|--------------------------|-----------------------------------------------------------------------------------------------|
|
160 |
+
| memory | |
|
161 |
+
| steps | [('imputer', SimpleImputer()), ('scaler', StandardScaler()), ('model', LogisticRegression())] |
|
162 |
+
| verbose | False |
|
163 |
+
| imputer | SimpleImputer() |
|
164 |
+
| scaler | StandardScaler() |
|
165 |
+
| model | LogisticRegression() |
|
166 |
+
| imputer__add_indicator | False |
|
167 |
+
| imputer__copy | True |
|
168 |
+
| imputer__fill_value | |
|
169 |
+
| imputer__missing_values | nan |
|
170 |
+
| imputer__strategy | mean |
|
171 |
+
| imputer__verbose | 0 |
|
172 |
+
| scaler__copy | True |
|
173 |
+
| scaler__with_mean | True |
|
174 |
+
| scaler__with_std | True |
|
175 |
+
| model__C | 1.0 |
|
176 |
+
| model__class_weight | |
|
177 |
+
| model__dual | False |
|
178 |
+
| model__fit_intercept | True |
|
179 |
+
| model__intercept_scaling | 1 |
|
180 |
+
| model__l1_ratio | |
|
181 |
+
| model__max_iter | 100 |
|
182 |
+
| model__multi_class | auto |
|
183 |
+
| model__n_jobs | |
|
184 |
+
| model__penalty | l2 |
|
185 |
+
| model__random_state | |
|
186 |
+
| model__solver | lbfgs |
|
187 |
+
| model__tol | 0.0001 |
|
188 |
+
| model__verbose | 0 |
|
189 |
+
| model__warm_start | False |
|
190 |
+
|
191 |
+
</details>
|
192 |
+
|
193 |
+
### Model Plot
|
194 |
+
|
195 |
+
The model plot is below.
|
196 |
+
|
197 |
+
<style>#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b {color: black;background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b pre{padding: 0;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-toggleable {background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-estimator:hover {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-item {z-index: 1;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-parallel-item:only-child::after {width: 0;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b div.sk-text-repr-fallback {display: none;}</style><div id="sk-e60317e1-ee5c-4f4d-98a6-92332ba1474b" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),('model', LogisticRegression())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6aee50d2-d0d7-437e-8e9b-bd1121de94e7" type="checkbox" ><label for="6aee50d2-d0d7-437e-8e9b-bd1121de94e7" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),('model', LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ac5b7f88-9a16-4c90-8fcb-2a4f833cadf1" type="checkbox" ><label for="ac5b7f88-9a16-4c90-8fcb-2a4f833cadf1" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="65ce6721-e323-4189-a9bd-e373e248f0f7" type="checkbox" ><label for="65ce6721-e323-4189-a9bd-e373e248f0f7" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2328c6c4-413e-46ed-b597-1b88227e45a5" type="checkbox" ><label for="2328c6c4-413e-46ed-b597-1b88227e45a5" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
|
198 |
+
|
199 |
+
## Evaluation Results
|
200 |
+
|
201 |
+
You can find the details about evaluation process and the evaluation results.
|
202 |
+
|
203 |
+
| Metric | Value |
|
204 |
+
|----------|----------|
|
205 |
+
| accuracy | 0.982456 |
|
206 |
+
| f1 score | 0.982456 |
|
207 |
+
|
208 |
+
# How to Get Started with the Model
|
209 |
+
|
210 |
+
[More Information Needed]
|
211 |
+
|
212 |
+
# Model Card Authors
|
213 |
+
|
214 |
+
This model card is written by following authors:
|
215 |
+
|
216 |
+
[More Information Needed]
|
217 |
+
|
218 |
+
# Model Card Contact
|
219 |
+
|
220 |
+
You can contact the model card authors through following channels:
|
221 |
+
[More Information Needed]
|
222 |
+
|
223 |
+
# Citation
|
224 |
+
|
225 |
+
Below you can find information related to citation.
|
226 |
+
|
227 |
+
**BibTeX:**
|
228 |
+
```
|
229 |
+
[More Information Needed]
|
230 |
+
```
|
231 |
+
|
232 |
+
# Confusion Matrix
|
233 |
+
|
234 |
+
![Confusion Matrix](path-to-confusion-matrix.png)
|
config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"id",
|
5 |
+
"radius_mean",
|
6 |
+
"texture_mean",
|
7 |
+
"perimeter_mean",
|
8 |
+
"area_mean",
|
9 |
+
"smoothness_mean",
|
10 |
+
"compactness_mean",
|
11 |
+
"concavity_mean",
|
12 |
+
"concave points_mean",
|
13 |
+
"symmetry_mean",
|
14 |
+
"fractal_dimension_mean",
|
15 |
+
"radius_se",
|
16 |
+
"texture_se",
|
17 |
+
"perimeter_se",
|
18 |
+
"area_se",
|
19 |
+
"smoothness_se",
|
20 |
+
"compactness_se",
|
21 |
+
"concavity_se",
|
22 |
+
"concave points_se",
|
23 |
+
"symmetry_se",
|
24 |
+
"fractal_dimension_se",
|
25 |
+
"radius_worst",
|
26 |
+
"texture_worst",
|
27 |
+
"perimeter_worst",
|
28 |
+
"area_worst",
|
29 |
+
"smoothness_worst",
|
30 |
+
"compactness_worst",
|
31 |
+
"concavity_worst",
|
32 |
+
"concave points_worst",
|
33 |
+
"symmetry_worst",
|
34 |
+
"fractal_dimension_worst",
|
35 |
+
"Unnamed: 32"
|
36 |
+
],
|
37 |
+
"environment": [
|
38 |
+
"scikit-learn=1.0.2"
|
39 |
+
],
|
40 |
+
"example_input": {
|
41 |
+
"Unnamed: 32": [
|
42 |
+
NaN,
|
43 |
+
NaN,
|
44 |
+
NaN
|
45 |
+
],
|
46 |
+
"area_mean": [
|
47 |
+
481.9,
|
48 |
+
1130.0,
|
49 |
+
748.9
|
50 |
+
],
|
51 |
+
"area_se": [
|
52 |
+
30.29,
|
53 |
+
96.05,
|
54 |
+
48.31
|
55 |
+
],
|
56 |
+
"area_worst": [
|
57 |
+
677.9,
|
58 |
+
1866.0,
|
59 |
+
1156.0
|
60 |
+
],
|
61 |
+
"compactness_mean": [
|
62 |
+
0.1058,
|
63 |
+
0.1029,
|
64 |
+
0.1223
|
65 |
+
],
|
66 |
+
"compactness_se": [
|
67 |
+
0.01911,
|
68 |
+
0.01652,
|
69 |
+
0.01484
|
70 |
+
],
|
71 |
+
"compactness_worst": [
|
72 |
+
0.2378,
|
73 |
+
0.2336,
|
74 |
+
0.2394
|
75 |
+
],
|
76 |
+
"concave points_mean": [
|
77 |
+
0.03821,
|
78 |
+
0.07951,
|
79 |
+
0.08087
|
80 |
+
],
|
81 |
+
"concave points_se": [
|
82 |
+
0.01037,
|
83 |
+
0.0137,
|
84 |
+
0.01093
|
85 |
+
],
|
86 |
+
"concave points_worst": [
|
87 |
+
0.1015,
|
88 |
+
0.1789,
|
89 |
+
0.1514
|
90 |
+
],
|
91 |
+
"concavity_mean": [
|
92 |
+
0.08005,
|
93 |
+
0.108,
|
94 |
+
0.1466
|
95 |
+
],
|
96 |
+
"concavity_se": [
|
97 |
+
0.02701,
|
98 |
+
0.02269,
|
99 |
+
0.02813
|
100 |
+
],
|
101 |
+
"concavity_worst": [
|
102 |
+
0.2671,
|
103 |
+
0.2687,
|
104 |
+
0.3791
|
105 |
+
],
|
106 |
+
"fractal_dimension_mean": [
|
107 |
+
0.06373,
|
108 |
+
0.05461,
|
109 |
+
0.05796
|
110 |
+
],
|
111 |
+
"fractal_dimension_se": [
|
112 |
+
0.003586,
|
113 |
+
0.001698,
|
114 |
+
0.002461
|
115 |
+
],
|
116 |
+
"fractal_dimension_worst": [
|
117 |
+
0.0875,
|
118 |
+
0.06589,
|
119 |
+
0.08019
|
120 |
+
],
|
121 |
+
"id": [
|
122 |
+
87930,
|
123 |
+
859575,
|
124 |
+
8670
|
125 |
+
],
|
126 |
+
"perimeter_mean": [
|
127 |
+
81.09,
|
128 |
+
123.6,
|
129 |
+
101.7
|
130 |
+
],
|
131 |
+
"perimeter_se": [
|
132 |
+
2.497,
|
133 |
+
5.486,
|
134 |
+
3.094
|
135 |
+
],
|
136 |
+
"perimeter_worst": [
|
137 |
+
96.05,
|
138 |
+
165.9,
|
139 |
+
124.9
|
140 |
+
],
|
141 |
+
"radius_mean": [
|
142 |
+
12.47,
|
143 |
+
18.94,
|
144 |
+
15.46
|
145 |
+
],
|
146 |
+
"radius_se": [
|
147 |
+
0.3961,
|
148 |
+
0.7888,
|
149 |
+
0.4743
|
150 |
+
],
|
151 |
+
"radius_worst": [
|
152 |
+
14.97,
|
153 |
+
24.86,
|
154 |
+
19.26
|
155 |
+
],
|
156 |
+
"smoothness_mean": [
|
157 |
+
0.09965,
|
158 |
+
0.09009,
|
159 |
+
0.1092
|
160 |
+
],
|
161 |
+
"smoothness_se": [
|
162 |
+
0.006953,
|
163 |
+
0.004444,
|
164 |
+
0.00624
|
165 |
+
],
|
166 |
+
"smoothness_worst": [
|
167 |
+
0.1426,
|
168 |
+
0.1193,
|
169 |
+
0.1546
|
170 |
+
],
|
171 |
+
"symmetry_mean": [
|
172 |
+
0.1925,
|
173 |
+
0.1582,
|
174 |
+
0.1931
|
175 |
+
],
|
176 |
+
"symmetry_se": [
|
177 |
+
0.01782,
|
178 |
+
0.01386,
|
179 |
+
0.01397
|
180 |
+
],
|
181 |
+
"symmetry_worst": [
|
182 |
+
0.3014,
|
183 |
+
0.2551,
|
184 |
+
0.2837
|
185 |
+
],
|
186 |
+
"texture_mean": [
|
187 |
+
18.6,
|
188 |
+
21.31,
|
189 |
+
19.48
|
190 |
+
],
|
191 |
+
"texture_se": [
|
192 |
+
1.044,
|
193 |
+
0.7975,
|
194 |
+
0.7859
|
195 |
+
],
|
196 |
+
"texture_worst": [
|
197 |
+
24.64,
|
198 |
+
26.58,
|
199 |
+
26.0
|
200 |
+
]
|
201 |
+
},
|
202 |
+
"model": {
|
203 |
+
"file": "example.pkl"
|
204 |
+
},
|
205 |
+
"model_format": "pickle",
|
206 |
+
"task": "tabular-classification"
|
207 |
+
}
|
208 |
+
}
|
confusion_matrix.png
ADDED
example.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb44989674b37907b3bf3fa89d9a9b99341635062d1c9536139020b121a86116
|
3 |
+
size 3132
|