metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- AI-Lab-Makerere/beans
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: beans-vit-224
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: beans
type: beans
config: default
split: test
args: default
metrics:
- type: accuracy
value: 0.9375
name: Accuracy
beans-vit-224
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the beans dataset. It achieves the following results on the evaluation set:
- Loss: 0.3256
- Accuracy: 0.9375
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0032 | 0.98 | 16 | 0.6540 | 0.8828 |
0.4711 | 1.97 | 32 | 0.4180 | 0.9297 |
0.3711 | 2.95 | 48 | 0.3256 | 0.9375 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1