mera-mix-4x7B / README.md
codelion's picture
Update README.md
09d965c verified
metadata
license: apache-2.0
model-index:
  - name: mera-mix-4x7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 72.95
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 89.17
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.44
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 77.17
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 85.64
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 66.11
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
          name: Open LLM Leaderboard

Model mera-mix-4x7B

This is a mixture of experts (MoE) model that is half as large (4 experts instead of 8) as the Mixtral-8x7B while been comparable to it across different benchmarks. You can use it as a drop in replacement for your Mixtral-8x7B and get much faster inference.

mera-mix-4x7B achieves the score of 75.91 on the OpenLLM Eval and compares well with 72.7 by Mixtral-8x7B and 74.46 by Mixtral-8x22B.

You can try the model with the Mera Mixture Chat.

In addition, to the official Open LLM Leaderboard, the results on OpenLLM Eval have been validated by others as well (76.59).

Our own initial eval is available here (76.37).

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.91
AI2 Reasoning Challenge (25-Shot) 72.95
HellaSwag (10-Shot) 89.17
MMLU (5-Shot) 64.44
TruthfulQA (0-shot) 77.17
Winogrande (5-shot) 85.64
GSM8k (5-shot) 66.11