metadata
base_model: facebook/w2v-bert-2.0
library_name: transformers
license: mit
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2.0-15red
results: []
w2v-bert-2.0-15red
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2430
- Wer: 0.1037
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 17000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.6691 | 0.4261 | 500 | 0.6233 | 0.5383 |
0.45 | 0.8522 | 1000 | 0.4130 | 0.3675 |
0.3758 | 1.2782 | 1500 | 0.3631 | 0.3105 |
0.2521 | 1.7043 | 2000 | 0.3245 | 0.2777 |
0.2897 | 2.1304 | 2500 | 0.3024 | 0.2466 |
0.23 | 2.5565 | 3000 | 0.2813 | 0.2389 |
0.2937 | 2.9825 | 3500 | 0.2713 | 0.2236 |
0.1833 | 3.4086 | 4000 | 0.2600 | 0.2055 |
0.1375 | 3.8347 | 4500 | 0.2424 | 0.1910 |
0.2097 | 4.2608 | 5000 | 0.2376 | 0.1856 |
0.1676 | 4.6868 | 5500 | 0.2304 | 0.1839 |
0.1268 | 5.1129 | 6000 | 0.2328 | 0.1687 |
0.1229 | 5.5390 | 6500 | 0.2274 | 0.1646 |
0.1116 | 5.9651 | 7000 | 0.2103 | 0.1562 |
0.2322 | 6.3911 | 7500 | 0.2080 | 0.1540 |
0.1592 | 6.8172 | 8000 | 0.2151 | 0.1496 |
0.0796 | 7.2433 | 8500 | 0.2065 | 0.1401 |
0.0774 | 7.6694 | 9000 | 0.2036 | 0.1373 |
0.0979 | 8.0954 | 9500 | 0.2109 | 0.1361 |
0.0916 | 8.5215 | 10000 | 0.2082 | 0.1320 |
0.1057 | 8.9476 | 10500 | 0.2080 | 0.1294 |
0.0642 | 9.3737 | 11000 | 0.2032 | 0.1245 |
0.0585 | 9.7997 | 11500 | 0.1974 | 0.1232 |
0.0531 | 10.2258 | 12000 | 0.2108 | 0.1203 |
0.049 | 10.6519 | 12500 | 0.2027 | 0.1155 |
0.0431 | 11.0780 | 13000 | 0.2065 | 0.1152 |
0.0454 | 11.5040 | 13500 | 0.2167 | 0.1122 |
0.0236 | 11.9301 | 14000 | 0.2195 | 0.1113 |
0.0313 | 12.3562 | 14500 | 0.2314 | 0.1080 |
0.0452 | 12.7823 | 15000 | 0.2231 | 0.1063 |
0.0159 | 13.2084 | 15500 | 0.2259 | 0.1057 |
0.0166 | 13.6344 | 16000 | 0.2355 | 0.1043 |
0.0175 | 14.0605 | 16500 | 0.2340 | 0.1040 |
0.0169 | 14.4866 | 17000 | 0.2430 | 0.1037 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu124
- Datasets 2.20.0
- Tokenizers 0.19.1