Edit model card

Synatra-7B-v0.3-dpo๐Ÿง

Synatra-7B-v0.3-dpo

Support Me

์‹œ๋‚˜ํŠธ๋ผ๋Š” ๊ฐœ์ธ ํ”„๋กœ์ ํŠธ๋กœ, 1์ธ์˜ ์ž์›์œผ๋กœ ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ธ์ด ๋งˆ์Œ์— ๋“œ์…จ๋‹ค๋ฉด ์•ฝ๊ฐ„์˜ ์—ฐ๊ตฌ๋น„ ์ง€์›์€ ์–ด๋–จ๊นŒ์š”? Buy me a Coffee

Wanna be a sponser? (Please) Contact me on Telegram AlzarTakkarsen

Model Details

Base Model
mistralai/Mistral-7B-Instruct-v0.1

Trained On
A100 80GB * 1

Instruction format

It follows ChatML format and Alpaca(No-Input) format.

Model Benchmark

KOBEST_BOOLQ, SENTINEG, WIC - ZERO_SHOT

EleutherAI/lm-evaluation-harness๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ BoolQ, SentiNeg, Wic์„ ์ธก์ •ํ–ˆ์Šต๋‹ˆ๋‹ค.

Model COPA HellaSwag BoolQ SentiNeg
EleutherAI/polyglot-ko-12.8b 0.7937 0.5954 0.4818 0.9117
Synatra-7B-v0.3-base 0.6344 0.5140 0.5226 NaN
Synatra-7B-v0.3-dpo 0.6380 0.4780 0.8058 0.8942

Ko-LLM-Leaderboard

On Benchmarking...

Implementation Code

Since, chat_template already contains insturction format above. You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-7B-v0.3-dpo")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-7B-v0.3-dpo")

messages = [
    {"role": "user", "content": "๋ฐ”๋‚˜๋‚˜๋Š” ์›๋ž˜ ํ•˜์–€์ƒ‰์ด์•ผ?"},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 53.14
ARC (25-shot) 62.8
HellaSwag (10-shot) 82.58
MMLU (5-shot) 61.46
TruthfulQA (0-shot) 56.46
Winogrande (5-shot) 76.24
GSM8K (5-shot) 23.73
DROP (3-shot) 8.68
Downloads last month
6,100
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for maywell/Synatra-7B-v0.3-dpo

Adapters
1 model
Finetunes
8 models
Quantizations
8 models