See axolotl config
axolotl version: 0.4.0
base_model: Qwen/Qwen1.5-0.5B-Chat
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: markab/Qwen1.5-Capybara-0.5B-Chat
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy: every_save
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true # boolean
trust_remote_code:
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: cfahlgren1/Capybara-Converted
type: sharegpt
conversation: chatml
field_system: system
field_human: human
field_model: gpt
- path: markab/coqa_qa_multi
type: sharegpt
conversation: chatml
field_system: system
field_human: human
field_model: gpt
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./out
sequence_len: 4000
sample_packing: false
pad_to_sequence_len: false
#device_map: sequential
#max_memory: {0: "8GB", 1: "8GB", 2: "14GB"}
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: qwen-capybara
wandb_entity:
wandb_watch:
wandb_name: Qwen1.5-Capybara-0.5B-Chat
wandb_log_model: checkpoint
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 0.00022
save_safetensors: true
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 15
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Qwen1.5-Capybara-0.5B-Chat
This model is a fine-tuned version of Qwen/Qwen1.5-0.5B-Chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0419
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00022
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.164 | 0.0 | 1 | 1.2662 |
0.759 | 0.25 | 343 | 1.0705 |
0.6798 | 0.5 | 686 | 1.0525 |
1.2828 | 0.75 | 1029 | 1.0419 |
Framework versions
- PEFT 0.9.1.dev0
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
Benchmark (MMLU)
Average: 33.35
STEM: 32.20
Social Sciences: 37.00
Humanities: 31.71
Other: 33.33
- Downloads last month
- 3
Model tree for markab/Qwen1.5-Capybara-0.5B-Chat
Base model
Qwen/Qwen1.5-0.5B-Chat