Preview of dataset trained on: https://huggingface.co/datasets/manishiitg/aditi-syn-v2
The synthetic dataset (https://huggingface.co/datasets/manishiitg/aditi-syn-v2) and the full data creation pipeline (https://github.com/manishiitg/aditi_dataset) have been open-sourced, enabling transparency and fostering further research in this domain. The dataset is a rich tapestry of Hinglish (a blend of Hindi and English) data, as well as a diverse array of tasks spanning tools, retrieval-augmented generation (RAG), mathematics, and reasoning – all in the Hindi language.
LMJudge Eval
https://github.com/manishiitg/IndicLMJudge
LLM Judge Language: hi
Model | Language | Score | No# Questions |
---|---|---|---|
mistralai/Mixtral-8x7B-Instruct-v0.1 | hi | 8.7148 | 554 |
Qwen/Qwen1.5-72B-Chat-AWQ | hi | 8.3695 | 554 |
manishiitg/open-aditi-v6-llama3 | hi | 8.2659 | 551 |
Qwen/Qwen1.5-14B-Chat | hi | 8.2404 | 554 |
google/gemma-7b-it | hi | 7.9152 | 554 |
manishiitg/open-aditi-v6-gemma | hi | 7.8634 | 549 |
Qwen/Qwen1.5-7B-Chat | hi | 7.8587 | 554 |
manishiitg/open-aditi-hi-v3 | hi | 7.7644 | 554 |
manishiitg/open-aditi-hi-v4 | hi | 7.6150 | 554 |
manishiitg/open-aditi-hi-v2 | hi | 7.2518 | 554 |
teknium/OpenHermes-2.5-Mistral-7B | hi | 7.2489 | 554 |
ai4bharat/Airavata | hi | 6.9468 | 554 |
01-ai/Yi-34B-Chat | hi | 6.5801 | 554 |
manishiitg/open-aditi-hi-v1 | hi | 4.7022 | 554 |
sarvamai/OpenHathi-7B-Hi-v0.1-Base | hi | 4.2834 | 598 |
Qwen/Qwen1.5-4B-Chat | hi | 4.1101 | 554 |
LLM Judge Language: en
Model | Language | Score | No# Questions |
---|---|---|---|
Qwen/Qwen1.5-14B-Chat | en | 9.1947 | 356 |
Qwen/Qwen1.5-72B-Chat-AWQ | en | 9.1618 | 356 |
Qwen/Qwen1.5-7B-Chat | en | 9.1570 | 356 |
01-ai/Yi-34B-Chat | en | 9.1368 | 356 |
mistralai/Mixtral-8x7B-Instruct-v0.1 | en | 9.1306 | 356 |
manishiitg/open-aditi-v6-gemma | en | 9.1003 | 356 |
teknium/OpenHermes-2.5-Mistral-7B | en | 9.0230 | 356 |
manishiitg/open-aditi-v6-llama3 | en | 9.0197 | 356 |
manishiitg/open-aditi-hi-v3 | en | 8.9615 | 356 |
manishiitg/open-aditi-hi-v4 | en | 8.9188 | 356 |
google/gemma-7b-it | en | 8.8191 | 356 |
Qwen/Qwen1.5-4B-Chat | en | 8.7500 | 356 |
google/gemma-2b-it | en | 8.4671 | 356 |
manishiitg/open-aditi-hi-v2 | en | 8.4584 | 356 |
ai4bharat/Airavata | en | 7.3834 | 356 |
manishiitg/open-aditi-hi-v1 | en | 6.6559 | 356 |
sarvamai/OpenHathi-7B-Hi-v0.1-Base | en | 5.9567 | 312 |
DHARMA TINY EVAL
Language Hi
Model | ARC-Easy | bigbench | truthful_qa | BoolQ | winogrande | agieval | ARC-Challenge | MMLU | openbookqa |
---|---|---|---|---|---|---|---|---|---|
open-aditi-hi-v2 | 0.6245 | 0.4959 | 0.3866 | 0.7192 | 0.5353 | 0.2945 | 0.4828 | 0.3457 | 0.5279 |
open-aditi-hi-v3 | 0.6803 | 0.4553 | 0.2788 | 0.7385 | 0.5390 | 0.2178 | 0.4914 | 0.3346 | 0.5688 |
open-aditi-hi-v4 | 0.6989 | 0.4526 | 0.2714 | 0.7231 | 0.5167 | 0.2331 | 0.5302 | 0.3123 | 0.5316 |
open-aditi-v6-gemma | 0.7212 | 0.4146 | 0.3234 | 0.6923 | 0.4870 | 0.2638 | 0.4957 | 0.3680 | 0.4349 |
open-aditi-v6-llama3 | 0.5688 | 0.4119 | 0.2268 | 0.6500 | 0.4498 | 0.2331 | 0.4310 | 0.3420 | 0.3792 |
open-aditi-hi-v1 | 0.4572 | 0.3767 | 0.2230 | 0.6346 | 0.4647 | 0.1840 | 0.3405 | 0.3271 | 0.3532 |
OpenHermes-2.5-Mistral-7B | 0.3309 | 0.4201 | 0.3197 | 0.6077 | 0.4981 | 0.2331 | 0.3276 | 0.3086 | 0.3086 |
OpenHathi-7B-Hi-v0.1-Base | 0.2862 | 0.3333 | 0.5130 | 0.6077 | 0.4907 | 0.2301 | 0.3017 | 0.2677 | 0.1933 |
Airavata | 0.2751 | 0.1274 | 0.2268 | 0.0615 | 0.3866 | 0.1104 | 0.2845 | 0.1450 | 0.3383 |
gemma-7b-it | 0.1227 | 0.0786 | 0.0743 | 0.1808 | 0.1561 | 0.0491 | 0.1078 | 0.0818 | 0.0855 |
Language En
Model | ARC-Easy | bigbench | truthful_qa | BoolQ | winogrande | agieval | ARC-Challenge | MMLU | openbookqa |
---|---|---|---|---|---|---|---|---|---|
OpenHermes-2.5-Mistral-7B | 0.8922 | 0.5745 | 0.3197 | 0.8346 | 0.6989 | 0.4908 | 0.7802 | 0.5911 | 0.7621 |
open-aditi-hi-v2 | 0.8625 | 0.5149 | 0.3532 | 0.8192 | 0.6877 | 0.4571 | 0.7500 | 0.5613 | 0.7732 |
open-aditi-hi-v4 | 0.8959 | 0.5041 | 0.2862 | 0.8423 | 0.6914 | 0.4571 | 0.7716 | 0.5651 | 0.7138 |
open-aditi-hi-v3 | 0.8773 | 0.4986 | 0.3048 | 0.8385 | 0.6766 | 0.4663 | 0.7371 | 0.5613 | 0.7249 |
Qwen1.5-7B-Chat | 0.8922 | 0.5122 | 0.2007 | 0.8000 | 0.6654 | 0.4294 | 0.7759 | 0.5799 | 0.7621 |
open-aditi-v6-gemma | 0.8699 | 0.4959 | 0.2602 | 0.7385 | 0.5465 | 0.4540 | 0.7371 | 0.5167 | 0.6654 |
open-aditi-v6-llama3 | 0.8810 | 0.4634 | 0.1822 | 0.7577 | 0.5353 | 0.4110 | 0.7457 | 0.5688 | 0.6506 |
open-aditi-hi-v1 | 0.8104 | 0.3902 | 0.2491 | 0.6962 | 0.5539 | 0.3681 | 0.6379 | 0.5056 | 0.5911 |
Airavata | 0.7026 | 0.4282 | 0.3123 | 0.7192 | 0.5651 | 0.3313 | 0.5172 | 0.3792 | 0.5093 |
OpenHathi-7B-Hi-v0.1-Base | 0.4684 | 0.3062 | 0.4758 | 0.6346 | 0.5167 | 0.2577 | 0.3017 | 0.2788 | 0.2714 |
Task: BoolQ Metric: score
Task: ARC-Easy Metric: score
Task: openbookqa Metric: score
Task: winogrande Metric: score
Task: ARC-Challenge Metric: score
Task: truthful_qa Metric: score
Task: bigbench Metric: score
Task: MMLU Metric: score
Task: agieval Metric: score
See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: manishiitg/aditi-syn-train-small-v3
type: completion
# 25 has only sythentic data, and has judge removed data
hub_model_id: manishiitg/open-aditi-chat-hi-1.25-llama3
hf_use_auth_token: true
wandb_project: open-aditi-chat-hi-1.25-llama3
dataset_prepared_path: manishiitg
push_dataset_to_hub: manishiitg
val_set_size: .1
output_dir: /sky-notebook/manishiitg/open-aditi-chat-hi-1.25-llama3
adapter: qlora
lora_model_dir:
save_safetensors: true
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 6
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true ## manage check point resume from here
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 20 ## increase based on your dataset
save_strategy: steps
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
open-aditi-chat-hi-1.25-llama3
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9727
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 384
- total_eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5388 | 0.01 | 1 | 2.5709 |
0.8839 | 0.5 | 88 | 1.9648 |
0.88 | 1.0 | 176 | 1.9727 |
Framework versions
- PEFT 0.9.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 0
Model tree for manishiitg/open-aditi-v6-llama3
Base model
meta-llama/Meta-Llama-3-8B