magnustragardh's picture
update model card README.md
a0b1bd1
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-en-minds14
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.2744982290436836

whisper-tiny-en-minds14

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5680
  • Wer Ortho: 0.2721
  • Wer: 0.2745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.4576 1.79 50 0.9286 0.3128 0.3152
0.3694 3.57 100 0.5188 0.2776 0.2774
0.0466 5.36 150 0.4494 0.2640 0.2692
0.008 7.14 200 0.4855 0.2782 0.2816
0.0026 8.93 250 0.4892 0.2801 0.2845
0.0016 10.71 300 0.5116 0.2745 0.2774
0.0004 12.5 350 0.5383 0.2770 0.2798
0.0002 14.29 400 0.5471 0.2758 0.2774
0.0002 16.07 450 0.5590 0.2714 0.2733
0.0001 17.86 500 0.5680 0.2721 0.2745

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3