|
import math |
|
from typing import Any, Optional, Tuple, Union |
|
|
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
from icecream import ic |
|
import einops |
|
from einops import rearrange |
|
|
|
def get_abs_pos(abs_pos, tgt_size): |
|
|
|
|
|
|
|
src_size = int(math.sqrt(abs_pos.size(0))) |
|
tgt_size = int(math.sqrt(tgt_size)) |
|
dtype = abs_pos.dtype |
|
|
|
if src_size != tgt_size: |
|
return F.interpolate( |
|
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), |
|
size=(tgt_size, tgt_size), |
|
mode="bicubic", |
|
align_corners=False, |
|
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) |
|
else: |
|
return abs_pos |
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_h = np.arange(grid_size, dtype=np.float32) |
|
grid_w = np.arange(grid_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
|
|
class MplugOwlVisionEmbeddings(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size)) |
|
|
|
self.patch_embed = nn.Conv2d( |
|
in_channels=3, |
|
out_channels=self.hidden_size, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
bias=False, |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
|
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size)) |
|
|
|
self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
batch_size = pixel_values.size(0) |
|
image_embeds = self.patch_embed(pixel_values) |
|
image_embeds = image_embeds.flatten(2).transpose(1, 2) |
|
|
|
class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype) |
|
embeddings = torch.cat([class_embeds, image_embeds], dim=1) |
|
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype) |
|
embeddings = self.pre_layernorm(embeddings) |
|
return embeddings |
|
|
|
|
|
|
|
class MplugOwlVisionAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
if self.head_dim * self.num_heads != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = nn.Dropout(config.attention_dropout) |
|
|
|
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size) |
|
self.dense = nn.Linear(self.hidden_size, self.hidden_size) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
bsz, seq_len, embed_dim = hidden_states.size() |
|
|
|
mixed_qkv = self.query_key_value(hidden_states) |
|
|
|
mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute( |
|
3, 0, 2, 1, 4 |
|
) |
|
query_states, key_states, value_states = ( |
|
mixed_qkv[0], |
|
mixed_qkv[1], |
|
mixed_qkv[2], |
|
) |
|
|
|
if False: |
|
|
|
query_states = query_states.permute(0, 2, 1, 3).contiguous() |
|
query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1) |
|
|
|
key_states = key_states.permute(0, 2, 1, 3).contiguous() |
|
key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1) |
|
|
|
value_states = value_states.permute(0, 2, 1, 3).contiguous() |
|
value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1) |
|
|
|
cu_seqlens = torch.arange( |
|
0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device |
|
) |
|
|
|
context_layer = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens, |
|
cu_seqlens, |
|
seq_len, |
|
seq_len, |
|
self.dropout if self.training else 0.0, |
|
softmax_scale=self.scale, |
|
causal=False, |
|
return_attn_probs=False, |
|
) |
|
|
|
context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2)) |
|
else: |
|
|
|
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores * self.scale |
|
|
|
|
|
attention_probs = torch.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) |
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,) |
|
context_layer = context_layer.reshape(new_context_layer_shape) |
|
|
|
output = self.dense(context_layer) |
|
|
|
outputs = (output, attention_probs) if output_attentions else (output, None) |
|
|
|
return outputs |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class MplugOwlMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.activation_fn = QuickGELU() |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class MplugOwlVisionEncoderLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = MplugOwlVisionAttention(config) |
|
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) |
|
self.mlp = MplugOwlMLP(config) |
|
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
`(config.encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
hidden_states, attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
head_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = hidden_states + residual |
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = hidden_states + residual |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class MplugOwlVisionEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`MplugOwlVisionEncoderLayer`]. |
|
|
|
Args: |
|
config (`MplugOwlVisionConfig`): |
|
The corresponding vision configuration for the `MplugOwlEncoder`. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = True |
|
|
|
def forward( |
|
self, |
|
inputs_embeds, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
r""" |
|
Args: |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Embedded representation of the inputs. Should be float, not int tokens. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
hidden_states = inputs_embeds |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(encoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
class MplugOwlVisionModel(PreTrainedModel): |
|
main_input_name = "pixel_values" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
|
|
self.embeddings = MplugOwlVisionEmbeddings(config) |
|
self.encoder = MplugOwlVisionEncoder(config) |
|
self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.post_init() |
|
|
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
hidden_states = self.embeddings(pixel_values) |
|
|
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
last_hidden_state = self.post_layernorm(last_hidden_state) |
|
|
|
pooled_output = last_hidden_state[:, 0, :] |
|
pooled_output = self.post_layernorm(pooled_output) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
|
|
class MplugDocOwlHReducerModel(PreTrainedModel): |
|
def __init__(self, config, language_hidden_size): |
|
super().__init__(config) |
|
self.config = config |
|
self.ln_q = torch.nn.LayerNorm(self.config.hidden_size, eps=1e-6) |
|
self.conv_shape = (int(self.config.conv_shape.split('x')[0]), int(self.config.conv_shape.split('x')[1])) |
|
self.conv_patch=self.conv_shape[0]*self.conv_shape[1] |
|
|
|
self.reducer_before = torch.nn.Sequential( |
|
nn.Conv2d(self.config.hidden_size, self.conv_patch*self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True), |
|
nn.GELU() |
|
) |
|
|
|
self.reducer = nn.Conv2d(self.config.hidden_size, self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True) |
|
|
|
self.visual_fc = torch.nn.Linear(self.config.hidden_size, language_hidden_size) |
|
self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size)) |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
encoder_hidden_states=None |
|
): |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): |
|
batch_size is the number of all images (global+crop) in a batch |
|
Sequence of hidden-states at the output of the last layer of the encoder. |
|
""" |
|
encoder_hidden_states = encoder_hidden_states[:,1:,:] |
|
B, L, C = encoder_hidden_states.shape |
|
|
|
|
|
encoder_hidden_states = rearrange(encoder_hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L))) |
|
hidden_states = self.reducer_before(encoder_hidden_states) |
|
|
|
"""hidden_states = hidden_states.flatten(2).transpose(1, 2) # B 4D H W/4 -> B 4D H*W/4 -> B H*W/4 4D |
|
hidden_states = rearrange(hidden_states, 'B L (X D) -> B (L X) D', X=self.conv_patch) # B (H W) D |
|
hidden_states = rearrange(hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L))) # B D H W """ |
|
hidden_states = rearrange(hidden_states, 'B (X D) H W -> B D H (W X)', X=self.conv_patch) |
|
sequence_output = self.reducer(hidden_states) |
|
sequence_output = sequence_output.flatten(2).transpose(1, 2) |
|
sequence_output = sequence_output.transpose(0, 1).contiguous() |
|
|
|
sequence_output = self.visual_fc(sequence_output) |
|
sequence_output = sequence_output.transpose(0, 1).contiguous() |
|
sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(B, 1, 1)], dim=1) |
|
|
|
return sequence_output |
|
|
|
|
|
|
|
|