Upload 13 files
Browse files- config.json +59 -0
- configuration_mplug_docowl.py +358 -0
- constants.py +9 -0
- generation_config.json +9 -0
- modeling_llama2_mam.py +1048 -0
- modeling_mplug_docowl.py +398 -0
- preprocessor_config.json +20 -0
- processor.py +226 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +35 -0
- visual_compressor.py +426 -0
- visual_encoder.py +501 -0
config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"mPLUGDocOwl2"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_mplug_docowl.MPLUGDocOwlConfig",
|
7 |
+
"AutoModel": "modeling_mplug_docowl.MPLUGDocOwl2",
|
8 |
+
"AutoModelForCausalLM": "modeling_mplug_docowl.MPLUGDocOwl2"
|
9 |
+
},
|
10 |
+
"attention_bias": false,
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 4096,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 11008,
|
17 |
+
"max_position_embeddings": 2048,
|
18 |
+
"model_type": "mplug_docowl",
|
19 |
+
"num_attention_heads": 32,
|
20 |
+
"num_hidden_layers": 32,
|
21 |
+
"num_key_value_heads": 32,
|
22 |
+
"pretraining_tp": 1,
|
23 |
+
"rms_norm_eps": 1e-06,
|
24 |
+
"rope_scaling": null,
|
25 |
+
"rope_theta": 10000.0,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"transformers_version": "4.39.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"visual_config": {
|
30 |
+
"visual_hrcompressor": {
|
31 |
+
"layer": 2,
|
32 |
+
"high_reso_cross_num_att_heads": 16,
|
33 |
+
"high_reso_cross_hid_size": 4096,
|
34 |
+
"high_reso_cross_dropout": 0.0
|
35 |
+
},
|
36 |
+
"visual_hreducer": {
|
37 |
+
"conv_shape": "1x4",
|
38 |
+
"hidden_size": 1024
|
39 |
+
},
|
40 |
+
"visual_model": {
|
41 |
+
"attention_dropout": 0.0,
|
42 |
+
"hidden_act": "quick_gelu",
|
43 |
+
"hidden_size": 1024,
|
44 |
+
"image_size": 504,
|
45 |
+
"initializer_factor": 1.0,
|
46 |
+
"initializer_range": 0.02,
|
47 |
+
"intermediate_size": 4096,
|
48 |
+
"layer_norm_eps": 1e-06,
|
49 |
+
"model_type": "mplug_owl_vision_model",
|
50 |
+
"num_attention_heads": 16,
|
51 |
+
"num_channels": 3,
|
52 |
+
"num_hidden_layers": 24,
|
53 |
+
"patch_size": 14,
|
54 |
+
"projection_dim": 768,
|
55 |
+
"use_flash_attn": false
|
56 |
+
}
|
57 |
+
},
|
58 |
+
"vocab_size": 32000
|
59 |
+
}
|
configuration_mplug_docowl.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
import copy
|
6 |
+
import os
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
from transformers.configuration_utils import PretrainedConfig
|
10 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
11 |
+
from transformers.utils import logging
|
12 |
+
from transformers.models.auto import CONFIG_MAPPING
|
13 |
+
|
14 |
+
|
15 |
+
class LlamaConfig(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
18 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
19 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
20 |
+
|
21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
+
documentation from [`PretrainedConfig`] for more information.
|
23 |
+
|
24 |
+
|
25 |
+
Args:
|
26 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
27 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
28 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
29 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
30 |
+
Dimension of the hidden representations.
|
31 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
32 |
+
Dimension of the MLP representations.
|
33 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
34 |
+
Number of hidden layers in the Transformer decoder.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
36 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
37 |
+
num_key_value_heads (`int`, *optional*):
|
38 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
39 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
40 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
41 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
42 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
43 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
44 |
+
`num_attention_heads`.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
46 |
+
The non-linear activation function (function or string) in the decoder.
|
47 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
48 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
49 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
50 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
51 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
52 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
53 |
+
The epsilon used by the rms normalization layers.
|
54 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
55 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
56 |
+
relevant if `config.is_decoder=True`.
|
57 |
+
pad_token_id (`int`, *optional*):
|
58 |
+
Padding token id.
|
59 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
60 |
+
Beginning of stream token id.
|
61 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
62 |
+
End of stream token id.
|
63 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
64 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
65 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
66 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
67 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
68 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
69 |
+
Whether to tie weight embeddings
|
70 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
71 |
+
The base period of the RoPE embeddings.
|
72 |
+
rope_scaling (`Dict`, *optional*):
|
73 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
74 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
75 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
76 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
77 |
+
these scaling strategies behave:
|
78 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
79 |
+
experimental feature, subject to breaking API changes in future versions.
|
80 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
81 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
82 |
+
|
83 |
+
|
84 |
+
```python
|
85 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
86 |
+
|
87 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
88 |
+
>>> configuration = LlamaConfig()
|
89 |
+
|
90 |
+
>>> # Initializing a model from the llama-7b style configuration
|
91 |
+
>>> model = LlamaModel(configuration)
|
92 |
+
|
93 |
+
>>> # Accessing the model configuration
|
94 |
+
>>> configuration = model.config
|
95 |
+
```"""
|
96 |
+
model_type = "llama"
|
97 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_size=32000,
|
102 |
+
hidden_size=4096,
|
103 |
+
intermediate_size=11008,
|
104 |
+
num_hidden_layers=32,
|
105 |
+
num_attention_heads=32,
|
106 |
+
num_key_value_heads=None,
|
107 |
+
hidden_act="silu",
|
108 |
+
max_position_embeddings=2048,
|
109 |
+
initializer_range=0.02,
|
110 |
+
rms_norm_eps=1e-6,
|
111 |
+
use_cache=True,
|
112 |
+
pad_token_id=None,
|
113 |
+
bos_token_id=1,
|
114 |
+
eos_token_id=2,
|
115 |
+
pretraining_tp=1,
|
116 |
+
tie_word_embeddings=False,
|
117 |
+
rope_theta=10000.0,
|
118 |
+
rope_scaling=None,
|
119 |
+
attention_bias=False,
|
120 |
+
**kwargs,
|
121 |
+
):
|
122 |
+
self.vocab_size = vocab_size
|
123 |
+
self.max_position_embeddings = max_position_embeddings
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.intermediate_size = intermediate_size
|
126 |
+
self.num_hidden_layers = num_hidden_layers
|
127 |
+
self.num_attention_heads = num_attention_heads
|
128 |
+
|
129 |
+
# for backward compatibility
|
130 |
+
if num_key_value_heads is None:
|
131 |
+
num_key_value_heads = num_attention_heads
|
132 |
+
|
133 |
+
self.num_key_value_heads = num_key_value_heads
|
134 |
+
self.hidden_act = hidden_act
|
135 |
+
self.initializer_range = initializer_range
|
136 |
+
self.rms_norm_eps = rms_norm_eps
|
137 |
+
self.pretraining_tp = pretraining_tp
|
138 |
+
self.use_cache = use_cache
|
139 |
+
self.rope_theta = rope_theta
|
140 |
+
self.rope_scaling = rope_scaling
|
141 |
+
self._rope_scaling_validation()
|
142 |
+
self.attention_bias = attention_bias
|
143 |
+
|
144 |
+
super().__init__(
|
145 |
+
pad_token_id=pad_token_id,
|
146 |
+
bos_token_id=bos_token_id,
|
147 |
+
eos_token_id=eos_token_id,
|
148 |
+
tie_word_embeddings=tie_word_embeddings,
|
149 |
+
**kwargs,
|
150 |
+
)
|
151 |
+
|
152 |
+
def _rope_scaling_validation(self):
|
153 |
+
"""
|
154 |
+
Validate the `rope_scaling` configuration.
|
155 |
+
"""
|
156 |
+
if self.rope_scaling is None:
|
157 |
+
return
|
158 |
+
|
159 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
160 |
+
raise ValueError(
|
161 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
162 |
+
f"got {self.rope_scaling}"
|
163 |
+
)
|
164 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
165 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
166 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
167 |
+
raise ValueError(
|
168 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
169 |
+
)
|
170 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
171 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
172 |
+
|
173 |
+
|
174 |
+
class MplugOwlVisionConfig(PretrainedConfig):
|
175 |
+
r"""
|
176 |
+
This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate
|
177 |
+
a
|
178 |
+
mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
179 |
+
configuration defaults will yield a similar configuration to that of the mPLUG-Owl
|
180 |
+
[x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.
|
181 |
+
|
182 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
183 |
+
documentation from [`PretrainedConfig`] for more information.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
187 |
+
Dimensionality of the encoder layers and the pooler layer.
|
188 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
189 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
190 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
191 |
+
Number of hidden layers in the Transformer encoder.
|
192 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
193 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
194 |
+
image_size (`int`, *optional*, defaults to 224):
|
195 |
+
The size (resolution) of each image.
|
196 |
+
patch_size (`int`, *optional*, defaults to 32):
|
197 |
+
The size (resolution) of each patch.
|
198 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
199 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
200 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
201 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
202 |
+
The epsilon used by the layer normalization layers.
|
203 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
204 |
+
The dropout ratio for the attention probabilities.
|
205 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
206 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
207 |
+
initializer_factor (`float`, *optional*, defaults to 1):
|
208 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
209 |
+
testing).
|
210 |
+
|
211 |
+
|
212 |
+
```"""
|
213 |
+
|
214 |
+
model_type = "mplug_owl_vision_model"
|
215 |
+
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
hidden_size=1024,
|
219 |
+
intermediate_size=4096,
|
220 |
+
projection_dim=768,
|
221 |
+
num_hidden_layers=24,
|
222 |
+
num_attention_heads=16,
|
223 |
+
num_channels=3,
|
224 |
+
image_size=448,
|
225 |
+
patch_size=14,
|
226 |
+
hidden_act="quick_gelu",
|
227 |
+
layer_norm_eps=1e-6,
|
228 |
+
attention_dropout=0.0,
|
229 |
+
initializer_range=0.02,
|
230 |
+
initializer_factor=1.0,
|
231 |
+
use_flash_attn=False,
|
232 |
+
**kwargs,
|
233 |
+
):
|
234 |
+
super().__init__(**kwargs)
|
235 |
+
self.hidden_size = hidden_size
|
236 |
+
self.intermediate_size = intermediate_size
|
237 |
+
self.projection_dim = projection_dim
|
238 |
+
self.num_hidden_layers = num_hidden_layers
|
239 |
+
self.num_attention_heads = num_attention_heads
|
240 |
+
self.num_channels = num_channels
|
241 |
+
self.patch_size = patch_size
|
242 |
+
self.image_size = image_size
|
243 |
+
self.initializer_range = initializer_range
|
244 |
+
self.initializer_factor = initializer_factor
|
245 |
+
self.attention_dropout = attention_dropout
|
246 |
+
self.layer_norm_eps = layer_norm_eps
|
247 |
+
self.hidden_act = hidden_act
|
248 |
+
self.use_flash_attn = use_flash_attn
|
249 |
+
|
250 |
+
@classmethod
|
251 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
252 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
253 |
+
|
254 |
+
# get the vision config dict if we are loading from MplugOwlConfig
|
255 |
+
if config_dict.get("model_type") == "mplug-owl":
|
256 |
+
config_dict = config_dict["vision_config"]
|
257 |
+
|
258 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
259 |
+
logger.warning(
|
260 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
261 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
262 |
+
)
|
263 |
+
|
264 |
+
return cls.from_dict(config_dict, **kwargs)
|
265 |
+
|
266 |
+
|
267 |
+
class MplugDocOwlHReducerConfig(PretrainedConfig):
|
268 |
+
model_type = "mplug_docowl_hreducer"
|
269 |
+
|
270 |
+
def __init__(
|
271 |
+
self,
|
272 |
+
hidden_size=1024,
|
273 |
+
initializer_range=0.02,
|
274 |
+
layer_norm_eps=1e-6,
|
275 |
+
conv_shape='1x4',
|
276 |
+
**kwargs,
|
277 |
+
):
|
278 |
+
super().__init__(**kwargs)
|
279 |
+
self.hidden_size = hidden_size
|
280 |
+
self.initializer_range = initializer_range
|
281 |
+
self.layer_norm_eps = layer_norm_eps
|
282 |
+
self.conv_shape = conv_shape
|
283 |
+
|
284 |
+
@classmethod
|
285 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
286 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
287 |
+
|
288 |
+
# get the visual_abstractor config dict if we are loading from MplugOwlConfig
|
289 |
+
if config_dict.get("model_type") == "mplug-docowl":
|
290 |
+
config_dict = config_dict["hreducer_config"]
|
291 |
+
|
292 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
293 |
+
logger.warning(
|
294 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
295 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
296 |
+
)
|
297 |
+
|
298 |
+
return cls.from_dict(config_dict, **kwargs)
|
299 |
+
|
300 |
+
|
301 |
+
class MplugDocOwlHRDocCompressorConfig(PretrainedConfig):
|
302 |
+
model_type = "mplug_docowl_hrcompressor"
|
303 |
+
|
304 |
+
def __init__(
|
305 |
+
self,
|
306 |
+
initializer_range=0.02,
|
307 |
+
layer_norm_eps=1e-6,
|
308 |
+
layer=2,
|
309 |
+
high_reso_cross_num_att_heads=16,
|
310 |
+
high_reso_cross_hid_size=4096,
|
311 |
+
high_reso_cross_dropout=0.0,
|
312 |
+
**kwargs,
|
313 |
+
):
|
314 |
+
super().__init__(**kwargs)
|
315 |
+
self.initializer_range = initializer_range
|
316 |
+
self.layer_norm_eps = layer_norm_eps
|
317 |
+
self.layer = layer
|
318 |
+
self.high_reso_cross_num_att_heads=high_reso_cross_num_att_heads
|
319 |
+
self.high_reso_cross_hid_size=high_reso_cross_hid_size
|
320 |
+
self.high_reso_cross_dropout=high_reso_cross_dropout
|
321 |
+
|
322 |
+
@classmethod
|
323 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
324 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
325 |
+
|
326 |
+
# get the visual_abstractor config dict if we are loading from MplugOwlConfig
|
327 |
+
if config_dict.get("model_type") == "mplug-docowl":
|
328 |
+
config_dict = config_dict["hrcompressor_config"]
|
329 |
+
|
330 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
331 |
+
logger.warning(
|
332 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
333 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
334 |
+
)
|
335 |
+
|
336 |
+
return cls.from_dict(config_dict, **kwargs)
|
337 |
+
|
338 |
+
|
339 |
+
DEFAULT_VISUAL_CONFIG = {
|
340 |
+
"visual_model": MplugOwlVisionConfig().to_dict(),
|
341 |
+
"visual_hreducer": MplugDocOwlHReducerConfig().to_dict(),
|
342 |
+
"visual_hrcompressor": MplugDocOwlHRDocCompressorConfig().to_dict()
|
343 |
+
}
|
344 |
+
|
345 |
+
class MPLUGDocOwlConfig(LlamaConfig):
|
346 |
+
model_type = "mplug_docowl"
|
347 |
+
def __init__(self, visual_config=None, **kwargs):
|
348 |
+
if visual_config is None:
|
349 |
+
self.visual_config = DEFAULT_VISUAL_CONFIG
|
350 |
+
else:
|
351 |
+
self.visual_config = visual_config
|
352 |
+
|
353 |
+
super().__init__(
|
354 |
+
**kwargs,
|
355 |
+
)
|
356 |
+
|
357 |
+
if __name__ == "__main__":
|
358 |
+
print(MplugOwlVisionConfig().to_dict())
|
constants.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
2 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
3 |
+
|
4 |
+
LOGDIR = "./demo_logs"
|
5 |
+
|
6 |
+
# Model Constants
|
7 |
+
IGNORE_INDEX = -100
|
8 |
+
IMAGE_TOKEN_INDEX = -200
|
9 |
+
DEFAULT_IMAGE_TOKEN = "<|image|>"
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"max_length": 4096,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"temperature": 0.9,
|
7 |
+
"top_p": 0.6,
|
8 |
+
"transformers_version": "4.31.0"
|
9 |
+
}
|
modeling_llama2_mam.py
ADDED
@@ -0,0 +1,1048 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch LLaMA model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
32 |
+
from transformers.modeling_utils import PreTrainedModel
|
33 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
34 |
+
# from .configuration_llama import LlamaConfig
|
35 |
+
from .configuration_mplug_docowl import LlamaConfig
|
36 |
+
|
37 |
+
from functools import partial
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
42 |
+
|
43 |
+
|
44 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
45 |
+
def _make_causal_mask(
|
46 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
Make causal mask used for bi-directional self-attention.
|
50 |
+
"""
|
51 |
+
bsz, tgt_len = input_ids_shape
|
52 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
53 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
54 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
55 |
+
mask = mask.to(dtype)
|
56 |
+
|
57 |
+
if past_key_values_length > 0:
|
58 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
59 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
60 |
+
|
61 |
+
|
62 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
63 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
64 |
+
"""
|
65 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
66 |
+
"""
|
67 |
+
bsz, src_len = mask.size()
|
68 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
69 |
+
|
70 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
71 |
+
|
72 |
+
inverted_mask = 1.0 - expanded_mask
|
73 |
+
|
74 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
75 |
+
|
76 |
+
|
77 |
+
class LlamaRMSNorm(nn.Module):
|
78 |
+
def __init__(self, hidden_size, eps=1e-6):
|
79 |
+
"""
|
80 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
81 |
+
"""
|
82 |
+
super().__init__()
|
83 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
84 |
+
self.variance_epsilon = eps
|
85 |
+
|
86 |
+
def forward(self, hidden_states):
|
87 |
+
input_dtype = hidden_states.dtype
|
88 |
+
hidden_states = hidden_states.to(torch.float32)
|
89 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
90 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
91 |
+
return self.weight * hidden_states.to(input_dtype)
|
92 |
+
|
93 |
+
|
94 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
95 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
self.dim = dim
|
99 |
+
self.max_position_embeddings = max_position_embeddings
|
100 |
+
self.base = base
|
101 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
102 |
+
self.register_buffer("inv_freq", inv_freq)
|
103 |
+
|
104 |
+
# Build here to make `torch.jit.trace` work.
|
105 |
+
self._set_cos_sin_cache(
|
106 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
107 |
+
)
|
108 |
+
|
109 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
110 |
+
self.max_seq_len_cached = seq_len
|
111 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
112 |
+
|
113 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
114 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
115 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
116 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
117 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
118 |
+
|
119 |
+
def forward(self, x, seq_len=None):
|
120 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
121 |
+
if seq_len > self.max_seq_len_cached:
|
122 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
123 |
+
|
124 |
+
return (
|
125 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
126 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
131 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
132 |
+
|
133 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
134 |
+
self.scaling_factor = scaling_factor
|
135 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
136 |
+
|
137 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
138 |
+
self.max_seq_len_cached = seq_len
|
139 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
140 |
+
t = t / self.scaling_factor
|
141 |
+
|
142 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
143 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
144 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
145 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
146 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
147 |
+
|
148 |
+
|
149 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
150 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
151 |
+
|
152 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
153 |
+
self.scaling_factor = scaling_factor
|
154 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
155 |
+
|
156 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
157 |
+
self.max_seq_len_cached = seq_len
|
158 |
+
|
159 |
+
if seq_len > self.max_position_embeddings:
|
160 |
+
base = self.base * (
|
161 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
162 |
+
) ** (self.dim / (self.dim - 2))
|
163 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
164 |
+
self.register_buffer("inv_freq", inv_freq)
|
165 |
+
|
166 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
167 |
+
|
168 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
169 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
170 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
171 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
172 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
173 |
+
|
174 |
+
|
175 |
+
def rotate_half(x):
|
176 |
+
"""Rotates half the hidden dims of the input."""
|
177 |
+
x1 = x[..., : x.shape[-1] // 2]
|
178 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
179 |
+
return torch.cat((-x2, x1), dim=-1)
|
180 |
+
|
181 |
+
|
182 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
183 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
184 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
185 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
186 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
187 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
188 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
189 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
190 |
+
return q_embed, k_embed
|
191 |
+
|
192 |
+
|
193 |
+
class LlamaMLP(nn.Module):
|
194 |
+
def __init__(self, config):
|
195 |
+
super().__init__()
|
196 |
+
self.pretraining_tp = config.pretraining_tp
|
197 |
+
self.hidden_size = config.hidden_size
|
198 |
+
self.intermediate_size = config.intermediate_size
|
199 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
200 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
201 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
202 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
if self.pretraining_tp > 1:
|
206 |
+
slice = self.intermediate_size // self.pretraining_tp
|
207 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
208 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
209 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
210 |
+
|
211 |
+
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
212 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
213 |
+
|
214 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
215 |
+
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
|
216 |
+
down_proj = sum(down_proj)
|
217 |
+
else:
|
218 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
219 |
+
|
220 |
+
return down_proj
|
221 |
+
|
222 |
+
|
223 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
224 |
+
"""
|
225 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
226 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
227 |
+
"""
|
228 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
229 |
+
if n_rep == 1:
|
230 |
+
return hidden_states
|
231 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
232 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
LLAMA_START_DOCSTRING = r"""
|
237 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
238 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
239 |
+
etc.)
|
240 |
+
|
241 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
242 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
243 |
+
and behavior.
|
244 |
+
|
245 |
+
Parameters:
|
246 |
+
config ([`LlamaConfig`]):
|
247 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
248 |
+
load the weights associated with the model, only the configuration. Check out the
|
249 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
250 |
+
"""
|
251 |
+
|
252 |
+
|
253 |
+
@add_start_docstrings(
|
254 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
255 |
+
LLAMA_START_DOCSTRING,
|
256 |
+
)
|
257 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
258 |
+
config_class = LlamaConfig
|
259 |
+
base_model_prefix = "model"
|
260 |
+
supports_gradient_checkpointing = True
|
261 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
262 |
+
_skip_keys_device_placement = "past_key_values"
|
263 |
+
|
264 |
+
def _init_weights(self, module):
|
265 |
+
std = self.config.initializer_range
|
266 |
+
if isinstance(module, nn.Linear):
|
267 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
268 |
+
if module.bias is not None:
|
269 |
+
module.bias.data.zero_()
|
270 |
+
elif isinstance(module, nn.Embedding):
|
271 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
272 |
+
if module.padding_idx is not None:
|
273 |
+
module.weight.data[module.padding_idx].zero_()
|
274 |
+
|
275 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
276 |
+
if isinstance(module, LlamaModel):
|
277 |
+
module.gradient_checkpointing = value
|
278 |
+
|
279 |
+
|
280 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
281 |
+
Args:
|
282 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
283 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
284 |
+
it.
|
285 |
+
|
286 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
287 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
288 |
+
|
289 |
+
[What are input IDs?](../glossary#input-ids)
|
290 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
291 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
292 |
+
|
293 |
+
- 1 for tokens that are **not masked**,
|
294 |
+
- 0 for tokens that are **masked**.
|
295 |
+
|
296 |
+
[What are attention masks?](../glossary#attention-mask)
|
297 |
+
|
298 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
299 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
300 |
+
|
301 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
302 |
+
`past_key_values`).
|
303 |
+
|
304 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
305 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
306 |
+
information on the default strategy.
|
307 |
+
|
308 |
+
- 1 indicates the head is **not masked**,
|
309 |
+
- 0 indicates the head is **masked**.
|
310 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
311 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
312 |
+
config.n_positions - 1]`.
|
313 |
+
|
314 |
+
[What are position IDs?](../glossary#position-ids)
|
315 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
316 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
317 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
318 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
319 |
+
|
320 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
321 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
322 |
+
|
323 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
324 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
325 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
326 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
327 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
328 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
329 |
+
model's internal embedding lookup matrix.
|
330 |
+
use_cache (`bool`, *optional*):
|
331 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
332 |
+
`past_key_values`).
|
333 |
+
output_attentions (`bool`, *optional*):
|
334 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
335 |
+
tensors for more detail.
|
336 |
+
output_hidden_states (`bool`, *optional*):
|
337 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
338 |
+
more detail.
|
339 |
+
return_dict (`bool`, *optional*):
|
340 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
341 |
+
"""
|
342 |
+
|
343 |
+
|
344 |
+
@add_start_docstrings(
|
345 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
346 |
+
LLAMA_START_DOCSTRING,
|
347 |
+
)
|
348 |
+
class LlamaModel(LlamaPreTrainedModel):
|
349 |
+
"""
|
350 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
351 |
+
|
352 |
+
Args:
|
353 |
+
config: LlamaConfig
|
354 |
+
"""
|
355 |
+
|
356 |
+
def __init__(self, config: LlamaConfig):
|
357 |
+
super().__init__(config)
|
358 |
+
self.padding_idx = config.pad_token_id
|
359 |
+
self.vocab_size = config.vocab_size
|
360 |
+
|
361 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
362 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
363 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
364 |
+
|
365 |
+
self.gradient_checkpointing = False
|
366 |
+
# Initialize weights and apply final processing
|
367 |
+
self.post_init()
|
368 |
+
|
369 |
+
def get_input_embeddings(self):
|
370 |
+
return self.embed_tokens
|
371 |
+
|
372 |
+
def set_input_embeddings(self, value):
|
373 |
+
self.embed_tokens = value
|
374 |
+
|
375 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
376 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
377 |
+
# create causal mask
|
378 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
379 |
+
combined_attention_mask = None
|
380 |
+
if input_shape[-1] > 1:
|
381 |
+
combined_attention_mask = _make_causal_mask(
|
382 |
+
input_shape,
|
383 |
+
inputs_embeds.dtype,
|
384 |
+
device=inputs_embeds.device,
|
385 |
+
past_key_values_length=past_key_values_length,
|
386 |
+
)
|
387 |
+
|
388 |
+
if attention_mask is not None:
|
389 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
390 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
391 |
+
inputs_embeds.device
|
392 |
+
)
|
393 |
+
combined_attention_mask = (
|
394 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
395 |
+
)
|
396 |
+
|
397 |
+
return combined_attention_mask
|
398 |
+
|
399 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
400 |
+
# copy from mplug-owl2 (https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2)
|
401 |
+
def forward(
|
402 |
+
self,
|
403 |
+
input_ids: torch.LongTensor = None,
|
404 |
+
modality_indicators: torch.Tensor = None,
|
405 |
+
attention_mask: Optional[torch.Tensor] = None,
|
406 |
+
position_ids: Optional[torch.LongTensor] = None,
|
407 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
408 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
409 |
+
use_cache: Optional[bool] = None,
|
410 |
+
output_attentions: Optional[bool] = None,
|
411 |
+
output_hidden_states: Optional[bool] = None,
|
412 |
+
return_dict: Optional[bool] = None,
|
413 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
414 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
415 |
+
output_hidden_states = (
|
416 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
417 |
+
)
|
418 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
419 |
+
|
420 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
421 |
+
|
422 |
+
# retrieve input_ids and inputs_embeds
|
423 |
+
if input_ids is not None and inputs_embeds is not None:
|
424 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
425 |
+
elif input_ids is not None:
|
426 |
+
batch_size, seq_length = input_ids.shape
|
427 |
+
elif inputs_embeds is not None:
|
428 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
429 |
+
else:
|
430 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
431 |
+
|
432 |
+
seq_length_with_past = seq_length
|
433 |
+
past_key_values_length = 0
|
434 |
+
|
435 |
+
if past_key_values is not None:
|
436 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
437 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
438 |
+
|
439 |
+
if position_ids is None:
|
440 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
441 |
+
position_ids = torch.arange(
|
442 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
443 |
+
)
|
444 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
445 |
+
else:
|
446 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
447 |
+
|
448 |
+
if inputs_embeds is None:
|
449 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
450 |
+
# embed positions
|
451 |
+
if attention_mask is None:
|
452 |
+
attention_mask = torch.ones(
|
453 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
454 |
+
)
|
455 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
456 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
457 |
+
)
|
458 |
+
|
459 |
+
hidden_states = inputs_embeds
|
460 |
+
|
461 |
+
if self.gradient_checkpointing and self.training:
|
462 |
+
if use_cache:
|
463 |
+
logger.warning_once(
|
464 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
465 |
+
)
|
466 |
+
use_cache = False
|
467 |
+
|
468 |
+
# decoder layers
|
469 |
+
all_hidden_states = () if output_hidden_states else None
|
470 |
+
all_self_attns = () if output_attentions else None
|
471 |
+
next_decoder_cache = () if use_cache else None
|
472 |
+
|
473 |
+
for idx, decoder_layer in enumerate(self.layers):
|
474 |
+
if output_hidden_states:
|
475 |
+
all_hidden_states += (hidden_states,)
|
476 |
+
|
477 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
478 |
+
|
479 |
+
if self.gradient_checkpointing and self.training:
|
480 |
+
|
481 |
+
def create_custom_forward(module):
|
482 |
+
def custom_forward(*inputs):
|
483 |
+
# None for past_key_value
|
484 |
+
return module(*inputs, past_key_value, output_attentions)
|
485 |
+
|
486 |
+
return custom_forward
|
487 |
+
|
488 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
489 |
+
create_custom_forward(decoder_layer),
|
490 |
+
hidden_states,
|
491 |
+
modality_indicators,
|
492 |
+
attention_mask,
|
493 |
+
position_ids,
|
494 |
+
)
|
495 |
+
else:
|
496 |
+
layer_outputs = decoder_layer(
|
497 |
+
hidden_states,
|
498 |
+
modality_indicators=modality_indicators,
|
499 |
+
attention_mask=attention_mask,
|
500 |
+
position_ids=position_ids,
|
501 |
+
past_key_value=past_key_value,
|
502 |
+
output_attentions=output_attentions,
|
503 |
+
use_cache=use_cache,
|
504 |
+
)
|
505 |
+
|
506 |
+
hidden_states = layer_outputs[0]
|
507 |
+
|
508 |
+
if use_cache:
|
509 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
510 |
+
|
511 |
+
if output_attentions:
|
512 |
+
all_self_attns += (layer_outputs[1],)
|
513 |
+
|
514 |
+
hidden_states = self.norm(hidden_states)
|
515 |
+
|
516 |
+
# add hidden states from the last decoder layer
|
517 |
+
if output_hidden_states:
|
518 |
+
all_hidden_states += (hidden_states,)
|
519 |
+
|
520 |
+
next_cache = next_decoder_cache if use_cache else None
|
521 |
+
if not return_dict:
|
522 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
523 |
+
return BaseModelOutputWithPast(
|
524 |
+
last_hidden_state=hidden_states,
|
525 |
+
past_key_values=next_cache,
|
526 |
+
hidden_states=all_hidden_states,
|
527 |
+
attentions=all_self_attns,
|
528 |
+
)
|
529 |
+
|
530 |
+
|
531 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
532 |
+
_tied_weights_keys = ["lm_head.weight"]
|
533 |
+
|
534 |
+
def __init__(self, config):
|
535 |
+
super().__init__(config)
|
536 |
+
self.model = LlamaModel(config)
|
537 |
+
self.pretraining_tp = config.pretraining_tp
|
538 |
+
self.vocab_size = config.vocab_size
|
539 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
540 |
+
|
541 |
+
# Initialize weights and apply final processing
|
542 |
+
self.post_init()
|
543 |
+
|
544 |
+
def get_input_embeddings(self):
|
545 |
+
return self.model.embed_tokens
|
546 |
+
|
547 |
+
def set_input_embeddings(self, value):
|
548 |
+
self.model.embed_tokens = value
|
549 |
+
|
550 |
+
def get_output_embeddings(self):
|
551 |
+
return self.lm_head
|
552 |
+
|
553 |
+
def set_output_embeddings(self, new_embeddings):
|
554 |
+
self.lm_head = new_embeddings
|
555 |
+
|
556 |
+
def set_decoder(self, decoder):
|
557 |
+
self.model = decoder
|
558 |
+
|
559 |
+
def get_decoder(self):
|
560 |
+
return self.model
|
561 |
+
|
562 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
563 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
564 |
+
# copy from mplug-owl2 (https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2)
|
565 |
+
def forward(
|
566 |
+
self,
|
567 |
+
input_ids: torch.LongTensor = None,
|
568 |
+
modality_indicators: torch.Tensor = None,
|
569 |
+
attention_mask: Optional[torch.Tensor] = None,
|
570 |
+
position_ids: Optional[torch.LongTensor] = None,
|
571 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
572 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
573 |
+
labels: Optional[torch.LongTensor] = None,
|
574 |
+
use_cache: Optional[bool] = None,
|
575 |
+
output_attentions: Optional[bool] = None,
|
576 |
+
output_hidden_states: Optional[bool] = None,
|
577 |
+
return_dict: Optional[bool] = None,
|
578 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
579 |
+
r"""
|
580 |
+
Args:
|
581 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
582 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
583 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
584 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
585 |
+
|
586 |
+
Returns:
|
587 |
+
|
588 |
+
Example:
|
589 |
+
|
590 |
+
```python
|
591 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
592 |
+
|
593 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
594 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
595 |
+
|
596 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
597 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
598 |
+
|
599 |
+
>>> # Generate
|
600 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
601 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
602 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
603 |
+
```"""
|
604 |
+
|
605 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
606 |
+
output_hidden_states = (
|
607 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
608 |
+
)
|
609 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
610 |
+
|
611 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
612 |
+
outputs = self.model(
|
613 |
+
input_ids=input_ids,
|
614 |
+
modality_indicators=modality_indicators,
|
615 |
+
attention_mask=attention_mask,
|
616 |
+
position_ids=position_ids,
|
617 |
+
past_key_values=past_key_values,
|
618 |
+
inputs_embeds=inputs_embeds,
|
619 |
+
use_cache=use_cache,
|
620 |
+
output_attentions=output_attentions,
|
621 |
+
output_hidden_states=output_hidden_states,
|
622 |
+
return_dict=return_dict,
|
623 |
+
)
|
624 |
+
|
625 |
+
hidden_states = outputs[0]
|
626 |
+
if self.config.pretraining_tp > 1:
|
627 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
628 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
629 |
+
logits = torch.cat(logits, dim=-1)
|
630 |
+
else:
|
631 |
+
logits = self.lm_head(hidden_states)
|
632 |
+
logits = logits.float()
|
633 |
+
|
634 |
+
loss = None
|
635 |
+
if labels is not None:
|
636 |
+
# Shift so that tokens < n predict n
|
637 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
638 |
+
shift_labels = labels[..., 1:].contiguous()
|
639 |
+
# Flatten the tokens
|
640 |
+
loss_fct = CrossEntropyLoss()
|
641 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
642 |
+
shift_labels = shift_labels.view(-1)
|
643 |
+
# Enable model parallelism
|
644 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
645 |
+
loss = loss_fct(shift_logits, shift_labels)
|
646 |
+
|
647 |
+
if not return_dict:
|
648 |
+
output = (logits,) + outputs[1:]
|
649 |
+
return (loss,) + output if loss is not None else output
|
650 |
+
|
651 |
+
return CausalLMOutputWithPast(
|
652 |
+
loss=loss,
|
653 |
+
logits=logits,
|
654 |
+
past_key_values=outputs.past_key_values,
|
655 |
+
hidden_states=outputs.hidden_states,
|
656 |
+
attentions=outputs.attentions,
|
657 |
+
)
|
658 |
+
|
659 |
+
def prepare_inputs_for_generation(
|
660 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
661 |
+
):
|
662 |
+
if past_key_values:
|
663 |
+
input_ids = input_ids[:, -1:]
|
664 |
+
|
665 |
+
position_ids = kwargs.get("position_ids", None)
|
666 |
+
if attention_mask is not None and position_ids is None:
|
667 |
+
# create position_ids on the fly for batch generation
|
668 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
669 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
670 |
+
if past_key_values:
|
671 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
672 |
+
|
673 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
674 |
+
if inputs_embeds is not None and past_key_values is None:
|
675 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
676 |
+
else:
|
677 |
+
model_inputs = {"input_ids": input_ids}
|
678 |
+
|
679 |
+
model_inputs.update(
|
680 |
+
{
|
681 |
+
"position_ids": position_ids,
|
682 |
+
"past_key_values": past_key_values,
|
683 |
+
"use_cache": kwargs.get("use_cache"),
|
684 |
+
"attention_mask": attention_mask,
|
685 |
+
}
|
686 |
+
)
|
687 |
+
return model_inputs
|
688 |
+
|
689 |
+
@staticmethod
|
690 |
+
def _reorder_cache(past_key_values, beam_idx):
|
691 |
+
reordered_past = ()
|
692 |
+
for layer_past in past_key_values:
|
693 |
+
reordered_past += (
|
694 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
695 |
+
)
|
696 |
+
return reordered_past
|
697 |
+
|
698 |
+
|
699 |
+
@add_start_docstrings(
|
700 |
+
"""
|
701 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
702 |
+
|
703 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
704 |
+
(e.g. GPT-2) do.
|
705 |
+
|
706 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
707 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
708 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
709 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
710 |
+
each row of the batch).
|
711 |
+
""",
|
712 |
+
LLAMA_START_DOCSTRING,
|
713 |
+
)
|
714 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
715 |
+
def __init__(self, config):
|
716 |
+
super().__init__(config)
|
717 |
+
self.num_labels = config.num_labels
|
718 |
+
self.model = LlamaModel(config)
|
719 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
720 |
+
|
721 |
+
# Initialize weights and apply final processing
|
722 |
+
self.post_init()
|
723 |
+
|
724 |
+
def get_input_embeddings(self):
|
725 |
+
return self.model.embed_tokens
|
726 |
+
|
727 |
+
def set_input_embeddings(self, value):
|
728 |
+
self.model.embed_tokens = value
|
729 |
+
|
730 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
731 |
+
def forward(
|
732 |
+
self,
|
733 |
+
input_ids: torch.LongTensor = None,
|
734 |
+
attention_mask: Optional[torch.Tensor] = None,
|
735 |
+
position_ids: Optional[torch.LongTensor] = None,
|
736 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
737 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
738 |
+
labels: Optional[torch.LongTensor] = None,
|
739 |
+
use_cache: Optional[bool] = None,
|
740 |
+
output_attentions: Optional[bool] = None,
|
741 |
+
output_hidden_states: Optional[bool] = None,
|
742 |
+
return_dict: Optional[bool] = None,
|
743 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
744 |
+
r"""
|
745 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
746 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
747 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
748 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
749 |
+
"""
|
750 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
751 |
+
|
752 |
+
transformer_outputs = self.model(
|
753 |
+
input_ids,
|
754 |
+
attention_mask=attention_mask,
|
755 |
+
position_ids=position_ids,
|
756 |
+
past_key_values=past_key_values,
|
757 |
+
inputs_embeds=inputs_embeds,
|
758 |
+
use_cache=use_cache,
|
759 |
+
output_attentions=output_attentions,
|
760 |
+
output_hidden_states=output_hidden_states,
|
761 |
+
return_dict=return_dict,
|
762 |
+
)
|
763 |
+
hidden_states = transformer_outputs[0]
|
764 |
+
logits = self.score(hidden_states)
|
765 |
+
|
766 |
+
if input_ids is not None:
|
767 |
+
batch_size = input_ids.shape[0]
|
768 |
+
else:
|
769 |
+
batch_size = inputs_embeds.shape[0]
|
770 |
+
|
771 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
772 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
773 |
+
if self.config.pad_token_id is None:
|
774 |
+
sequence_lengths = -1
|
775 |
+
else:
|
776 |
+
if input_ids is not None:
|
777 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
778 |
+
else:
|
779 |
+
sequence_lengths = -1
|
780 |
+
|
781 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
782 |
+
|
783 |
+
loss = None
|
784 |
+
if labels is not None:
|
785 |
+
labels = labels.to(logits.device)
|
786 |
+
if self.config.problem_type is None:
|
787 |
+
if self.num_labels == 1:
|
788 |
+
self.config.problem_type = "regression"
|
789 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
790 |
+
self.config.problem_type = "single_label_classification"
|
791 |
+
else:
|
792 |
+
self.config.problem_type = "multi_label_classification"
|
793 |
+
|
794 |
+
if self.config.problem_type == "regression":
|
795 |
+
loss_fct = MSELoss()
|
796 |
+
if self.num_labels == 1:
|
797 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
798 |
+
else:
|
799 |
+
loss = loss_fct(pooled_logits, labels)
|
800 |
+
elif self.config.problem_type == "single_label_classification":
|
801 |
+
loss_fct = CrossEntropyLoss()
|
802 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
803 |
+
elif self.config.problem_type == "multi_label_classification":
|
804 |
+
loss_fct = BCEWithLogitsLoss()
|
805 |
+
loss = loss_fct(pooled_logits, labels)
|
806 |
+
if not return_dict:
|
807 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
808 |
+
return ((loss,) + output) if loss is not None else output
|
809 |
+
|
810 |
+
return SequenceClassifierOutputWithPast(
|
811 |
+
loss=loss,
|
812 |
+
logits=pooled_logits,
|
813 |
+
past_key_values=transformer_outputs.past_key_values,
|
814 |
+
hidden_states=transformer_outputs.hidden_states,
|
815 |
+
attentions=transformer_outputs.attentions,
|
816 |
+
)
|
817 |
+
|
818 |
+
# copy from mplug-owl2 (https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2)
|
819 |
+
class MultiwayNetwork(nn.Module):
|
820 |
+
|
821 |
+
def __init__(self, module_provider, num_multiway=2):
|
822 |
+
super(MultiwayNetwork, self).__init__()
|
823 |
+
|
824 |
+
self.multiway = torch.nn.ModuleList([module_provider() for _ in range(num_multiway)])
|
825 |
+
|
826 |
+
def forward(self, hidden_states, multiway_indices):
|
827 |
+
|
828 |
+
if len(self.multiway) == 1:
|
829 |
+
return self.multiway[0](hidden_states)
|
830 |
+
|
831 |
+
output_hidden_states = torch.empty_like(hidden_states)
|
832 |
+
|
833 |
+
for idx, subway in enumerate(self.multiway):
|
834 |
+
local_indices = multiway_indices.eq(idx).nonzero(as_tuple=True)
|
835 |
+
hidden = hidden_states[local_indices].unsqueeze(1).contiguous()
|
836 |
+
if hidden.numel():
|
837 |
+
output = subway(hidden)
|
838 |
+
if isinstance(output, tuple):
|
839 |
+
output = output[0]
|
840 |
+
output = output.squeeze(1)
|
841 |
+
output_hidden_states[local_indices] = output
|
842 |
+
|
843 |
+
return output_hidden_states.contiguous()
|
844 |
+
|
845 |
+
# copy from mplug-owl2 (https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2)
|
846 |
+
class LlamaAttention(nn.Module):
|
847 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
848 |
+
|
849 |
+
def __init__(self, config: LlamaConfig):
|
850 |
+
super().__init__()
|
851 |
+
self.config = config
|
852 |
+
self.hidden_size = config.hidden_size
|
853 |
+
self.num_heads = config.num_attention_heads
|
854 |
+
self.head_dim = self.hidden_size // self.num_heads
|
855 |
+
self.num_key_value_heads = config.num_key_value_heads
|
856 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
857 |
+
self.max_position_embeddings = config.max_position_embeddings
|
858 |
+
self.rope_theta = config.rope_theta
|
859 |
+
|
860 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
861 |
+
raise ValueError(
|
862 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
863 |
+
f" and `num_heads`: {self.num_heads})."
|
864 |
+
)
|
865 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
866 |
+
self.k_proj = MultiwayNetwork(module_provider=partial(
|
867 |
+
nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
868 |
+
)
|
869 |
+
self.v_proj = MultiwayNetwork(module_provider=partial(
|
870 |
+
nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
871 |
+
)
|
872 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
873 |
+
self._init_rope()
|
874 |
+
|
875 |
+
def _init_rope(self):
|
876 |
+
if self.config.rope_scaling is None:
|
877 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
878 |
+
self.head_dim,
|
879 |
+
max_position_embeddings=self.max_position_embeddings,
|
880 |
+
base=self.rope_theta,
|
881 |
+
)
|
882 |
+
else:
|
883 |
+
scaling_type = self.config.rope_scaling["type"]
|
884 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
885 |
+
if scaling_type == "linear":
|
886 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
887 |
+
self.head_dim,
|
888 |
+
max_position_embeddings=self.max_position_embeddings,
|
889 |
+
scaling_factor=scaling_factor,
|
890 |
+
base=self.rope_theta,
|
891 |
+
)
|
892 |
+
elif scaling_type == "dynamic":
|
893 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
894 |
+
self.head_dim,
|
895 |
+
max_position_embeddings=self.max_position_embeddings,
|
896 |
+
scaling_factor=scaling_factor,
|
897 |
+
base=self.rope_theta,
|
898 |
+
)
|
899 |
+
else:
|
900 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
901 |
+
|
902 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
903 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
904 |
+
|
905 |
+
def forward(
|
906 |
+
self,
|
907 |
+
hidden_states: torch.Tensor,
|
908 |
+
modality_indicators: torch.Tensor,
|
909 |
+
attention_mask: Optional[torch.Tensor] = None,
|
910 |
+
position_ids: Optional[torch.LongTensor] = None,
|
911 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
912 |
+
output_attentions: bool = False,
|
913 |
+
use_cache: bool = False,
|
914 |
+
padding_mask: Optional[torch.LongTensor] = None,
|
915 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
916 |
+
bsz, q_len, _ = hidden_states.size()
|
917 |
+
|
918 |
+
query_states = self.q_proj(hidden_states, )
|
919 |
+
key_states = self.k_proj(hidden_states, modality_indicators)
|
920 |
+
value_states = self.v_proj(hidden_states, modality_indicators)
|
921 |
+
|
922 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
923 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
924 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
925 |
+
|
926 |
+
kv_seq_len = key_states.shape[-2]
|
927 |
+
if past_key_value is not None:
|
928 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
929 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
930 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
931 |
+
|
932 |
+
if past_key_value is not None:
|
933 |
+
# reuse k, v, self_attention
|
934 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
935 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
936 |
+
|
937 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
938 |
+
|
939 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
940 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
941 |
+
|
942 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
943 |
+
|
944 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
945 |
+
raise ValueError(
|
946 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
947 |
+
f" {attn_weights.size()}"
|
948 |
+
)
|
949 |
+
|
950 |
+
if attention_mask is not None:
|
951 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
952 |
+
raise ValueError(
|
953 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
954 |
+
)
|
955 |
+
attn_weights = attn_weights + attention_mask
|
956 |
+
|
957 |
+
# upcast attention to fp32
|
958 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
959 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
960 |
+
|
961 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
962 |
+
raise ValueError(
|
963 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
964 |
+
f" {attn_output.size()}"
|
965 |
+
)
|
966 |
+
|
967 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
968 |
+
|
969 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
970 |
+
|
971 |
+
attn_output = self.o_proj(attn_output)
|
972 |
+
|
973 |
+
if not output_attentions:
|
974 |
+
attn_weights = None
|
975 |
+
|
976 |
+
return attn_output, attn_weights, past_key_value
|
977 |
+
|
978 |
+
|
979 |
+
# copy from mplug-owl2 (https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2)
|
980 |
+
class LlamaDecoderLayer(nn.Module):
|
981 |
+
def __init__(self, config: LlamaConfig):
|
982 |
+
super().__init__()
|
983 |
+
self.hidden_size = config.hidden_size
|
984 |
+
self.self_attn = LlamaAttention(config=config)
|
985 |
+
self.mlp = LlamaMLP(config)
|
986 |
+
self.input_layernorm = MultiwayNetwork(module_provider=partial(
|
987 |
+
LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
988 |
+
))
|
989 |
+
self.post_attention_layernorm = MultiwayNetwork(module_provider=partial(
|
990 |
+
LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
991 |
+
))
|
992 |
+
|
993 |
+
def forward(
|
994 |
+
self,
|
995 |
+
hidden_states: torch.Tensor,
|
996 |
+
modality_indicators: torch.Tensor = None,
|
997 |
+
attention_mask: Optional[torch.Tensor] = None,
|
998 |
+
position_ids: Optional[torch.LongTensor] = None,
|
999 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1000 |
+
output_attentions: Optional[bool] = False,
|
1001 |
+
use_cache: Optional[bool] = False,
|
1002 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1003 |
+
"""
|
1004 |
+
Args:
|
1005 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1006 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1007 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
1008 |
+
output_attentions (`bool`, *optional*):
|
1009 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1010 |
+
returned tensors for more detail.
|
1011 |
+
use_cache (`bool`, *optional*):
|
1012 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1013 |
+
(see `past_key_values`).
|
1014 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1015 |
+
"""
|
1016 |
+
|
1017 |
+
residual = hidden_states
|
1018 |
+
|
1019 |
+
hidden_states = self.input_layernorm(hidden_states, modality_indicators)
|
1020 |
+
|
1021 |
+
# Self Attention
|
1022 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1023 |
+
hidden_states=hidden_states,
|
1024 |
+
modality_indicators=modality_indicators,
|
1025 |
+
attention_mask=attention_mask,
|
1026 |
+
position_ids=position_ids,
|
1027 |
+
past_key_value=past_key_value,
|
1028 |
+
output_attentions=output_attentions,
|
1029 |
+
use_cache=use_cache,
|
1030 |
+
)
|
1031 |
+
hidden_states = residual + hidden_states
|
1032 |
+
|
1033 |
+
# Fully Connected
|
1034 |
+
residual = hidden_states
|
1035 |
+
hidden_states = self.post_attention_layernorm(hidden_states, modality_indicators)
|
1036 |
+
hidden_states = self.mlp(hidden_states)
|
1037 |
+
hidden_states = residual + hidden_states
|
1038 |
+
|
1039 |
+
outputs = (hidden_states,)
|
1040 |
+
|
1041 |
+
if output_attentions:
|
1042 |
+
outputs += (self_attn_weights,)
|
1043 |
+
|
1044 |
+
if use_cache:
|
1045 |
+
outputs += (present_key_value,)
|
1046 |
+
|
1047 |
+
return outputs
|
1048 |
+
|
modeling_mplug_docowl.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu & Qinghao Ye (Modified from LLaVA)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
23 |
+
from .modeling_llama2_mam import LlamaConfig, LlamaModel, LlamaForCausalLM
|
24 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
25 |
+
|
26 |
+
from .configuration_mplug_docowl import (MPLUGDocOwlConfig, MplugOwlVisionConfig, MplugDocOwlHReducerConfig, MplugDocOwlHRDocCompressorConfig)
|
27 |
+
from .visual_encoder import MplugOwlVisionModel, MplugDocOwlHReducerModel
|
28 |
+
from .visual_compressor import MplugDocOwlHRDocCompressor
|
29 |
+
from .processor import DocProcessor
|
30 |
+
|
31 |
+
from .constants import IMAGE_TOKEN_INDEX, IGNORE_INDEX
|
32 |
+
from icecream import ic
|
33 |
+
|
34 |
+
from transformers import StoppingCriteria, TextStreamer
|
35 |
+
|
36 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
37 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
38 |
+
self.keywords = keywords
|
39 |
+
self.keyword_ids = []
|
40 |
+
self.max_keyword_len = 0
|
41 |
+
for keyword in keywords:
|
42 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
43 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
44 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
45 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
46 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
47 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
48 |
+
self.tokenizer = tokenizer
|
49 |
+
self.start_len = input_ids.shape[1]
|
50 |
+
|
51 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
52 |
+
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
|
53 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
54 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
55 |
+
for keyword_id in self.keyword_ids:
|
56 |
+
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
|
57 |
+
return True
|
58 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
59 |
+
for keyword in self.keywords:
|
60 |
+
if keyword in outputs:
|
61 |
+
return True
|
62 |
+
return False
|
63 |
+
|
64 |
+
class MPLUGDocOwlMetaModel:
|
65 |
+
_no_split_modules = ["MplugOwlVisionModel", "MplugDocOwlHReducerModel", "MplugDocOwlHRDocCompressor"]
|
66 |
+
def __init__(self, config):
|
67 |
+
super(MPLUGDocOwlMetaModel, self).__init__(config)
|
68 |
+
self.vision_model = MplugOwlVisionModel(
|
69 |
+
MplugOwlVisionConfig(**config.visual_config["visual_model"])
|
70 |
+
)
|
71 |
+
v_img_row_tokens = int((config.visual_config["visual_model"]['image_size']/config.visual_config["visual_model"]['patch_size']))
|
72 |
+
v_img_col_tokens = v_img_row_tokens
|
73 |
+
|
74 |
+
self.vision2text = MplugDocOwlHReducerModel(
|
75 |
+
MplugDocOwlHReducerConfig(**config.visual_config["visual_hreducer"]), config.hidden_size
|
76 |
+
)
|
77 |
+
|
78 |
+
horizontal_reduce = int(config.visual_config["visual_hreducer"]['conv_shape'].split('x')[1])
|
79 |
+
v2t_img_col_tokens = int(v_img_row_tokens / horizontal_reduce)
|
80 |
+
|
81 |
+
self.hr_compressor = MplugDocOwlHRDocCompressor(
|
82 |
+
MplugDocOwlHRDocCompressorConfig(**config.visual_config["visual_hrcompressor"]),
|
83 |
+
config.hidden_size,
|
84 |
+
v2t_img_col_tokens
|
85 |
+
)
|
86 |
+
|
87 |
+
def get_vision_tower(self):
|
88 |
+
vision_model = getattr(self, 'vision_model', None)
|
89 |
+
if type(vision_model) is list:
|
90 |
+
vision_model = vision_model[0]
|
91 |
+
return vision_model
|
92 |
+
|
93 |
+
def get_vision2text(self):
|
94 |
+
vision2text = getattr(self, 'vision2text', None)
|
95 |
+
if type(vision2text) is list:
|
96 |
+
vision2text = vision2text[0]
|
97 |
+
return vision2text
|
98 |
+
|
99 |
+
def get_hrcompressor(self):
|
100 |
+
hrcompressor = getattr(self, 'hr_compressor', None)
|
101 |
+
if type(hrcompressor) is list:
|
102 |
+
hrcompressor = hrcompressor[0]
|
103 |
+
return hrcompressor
|
104 |
+
|
105 |
+
class MPLUGDocOwlMetaForCausalLM(ABC):
|
106 |
+
@abstractmethod
|
107 |
+
def get_model(self):
|
108 |
+
pass
|
109 |
+
|
110 |
+
def encode_images(self, images, patch_positions):
|
111 |
+
image_features = self.get_model().vision_model(images).last_hidden_state
|
112 |
+
image_features = self.get_model().vision2text(encoder_hidden_states=image_features)
|
113 |
+
image_features = self.get_model().hr_compressor(hidden_states=image_features, patch_positions=patch_positions)
|
114 |
+
return image_features
|
115 |
+
|
116 |
+
def prepare_inputs_labels_for_multimodal(
|
117 |
+
self, input_ids, attention_mask, past_key_values, labels, images, patch_positions
|
118 |
+
):
|
119 |
+
# ic(images.shape, patch_positions.shape)
|
120 |
+
if images is None or input_ids.shape[1] == 1:
|
121 |
+
if past_key_values is not None and images is not None and input_ids.shape[1] == 1:
|
122 |
+
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
|
123 |
+
multiway_indices = torch.zeros_like(input_ids).long().to(self.device)
|
124 |
+
return input_ids, multiway_indices, attention_mask, past_key_values, None, labels
|
125 |
+
|
126 |
+
if type(images) is list or images.ndim == 5:
|
127 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
128 |
+
image_features = self.encode_images(concat_images, patch_positions)
|
129 |
+
split_sizes = [image.shape[0] for image in images]
|
130 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
131 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
132 |
+
else:
|
133 |
+
image_features = self.encode_images(images, patch_positions) # Sum(Crop Image Number) x L x d
|
134 |
+
|
135 |
+
new_input_embeds = []
|
136 |
+
new_modality_indicators = []
|
137 |
+
new_labels = [] if labels is not None else None
|
138 |
+
cur_image_idx = 0
|
139 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
140 |
+
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
|
141 |
+
# multimodal LLM, but the current sample is not multimodal
|
142 |
+
# FIXME: this is a hacky fix, for deepspeed zero3 to work
|
143 |
+
half_len = cur_input_ids.shape[0] // 2
|
144 |
+
cur_image_features = image_features[cur_image_idx]
|
145 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
|
146 |
+
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
|
147 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
|
148 |
+
new_input_embeds.append(cur_input_embeds)
|
149 |
+
|
150 |
+
cur_modality_indicators = torch.zeros(len(cur_input_embeds)).long().to(self.device)
|
151 |
+
new_modality_indicators.append(cur_modality_indicators)
|
152 |
+
if labels is not None:
|
153 |
+
new_labels.append(labels[batch_idx])
|
154 |
+
cur_image_idx += 1
|
155 |
+
continue
|
156 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
157 |
+
cur_new_input_embeds = []
|
158 |
+
cur_modality_indicators = []
|
159 |
+
if labels is not None:
|
160 |
+
cur_labels = labels[batch_idx]
|
161 |
+
cur_new_labels = []
|
162 |
+
assert cur_labels.shape == cur_input_ids.shape
|
163 |
+
while image_token_indices.numel() > 0:
|
164 |
+
cur_image_features = image_features[cur_image_idx]
|
165 |
+
image_token_start = image_token_indices[0]
|
166 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
|
167 |
+
cur_new_input_embeds.append(cur_image_features)
|
168 |
+
|
169 |
+
# Add modality indicator
|
170 |
+
assert image_token_start == len(cur_input_ids[:image_token_start])
|
171 |
+
cur_modality_indicators.append(torch.zeros(len(cur_input_ids[:image_token_start])).long())
|
172 |
+
cur_modality_indicators.append(torch.ones(len(cur_image_features)).long())
|
173 |
+
|
174 |
+
if labels is not None:
|
175 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
176 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
|
177 |
+
cur_labels = cur_labels[image_token_start+1:]
|
178 |
+
cur_image_idx += 1
|
179 |
+
cur_input_ids = cur_input_ids[image_token_start+1:]
|
180 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
181 |
+
if cur_input_ids.numel() > 0:
|
182 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
|
183 |
+
cur_modality_indicators.append(torch.zeros(len(cur_input_ids)).long())
|
184 |
+
if labels is not None:
|
185 |
+
cur_new_labels.append(cur_labels)
|
186 |
+
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
|
187 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
188 |
+
new_input_embeds.append(cur_new_input_embeds)
|
189 |
+
|
190 |
+
# Modality
|
191 |
+
cur_modality_indicators = [x.to(device=self.device) for x in cur_modality_indicators]
|
192 |
+
cur_modality_indicators = torch.cat(cur_modality_indicators, dim=0)
|
193 |
+
new_modality_indicators.append(cur_modality_indicators)
|
194 |
+
|
195 |
+
|
196 |
+
if labels is not None:
|
197 |
+
cur_new_labels = torch.cat(cur_new_labels, dim=0)
|
198 |
+
new_labels.append(cur_new_labels)
|
199 |
+
|
200 |
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
201 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
202 |
+
|
203 |
+
# Embedding
|
204 |
+
new_input_embeds_align = []
|
205 |
+
for cur_new_embed in new_input_embeds:
|
206 |
+
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
|
207 |
+
new_input_embeds_align.append(cur_new_embed)
|
208 |
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
209 |
+
|
210 |
+
# Modality
|
211 |
+
new_modality_indicators_align = []
|
212 |
+
for cur_modality_indicator in new_modality_indicators:
|
213 |
+
cur_new_embed = torch.cat((cur_modality_indicator, torch.zeros(max_len - cur_modality_indicator.shape[0], dtype=cur_modality_indicator.dtype, device=cur_modality_indicator.device)), dim=0)
|
214 |
+
new_modality_indicators_align.append(cur_new_embed)
|
215 |
+
new_modality_indicators = torch.stack(new_modality_indicators_align, dim=0)
|
216 |
+
|
217 |
+
# Label
|
218 |
+
if labels is not None:
|
219 |
+
new_labels_align = []
|
220 |
+
_new_labels = new_labels
|
221 |
+
for cur_new_label in new_labels:
|
222 |
+
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
|
223 |
+
new_labels_align.append(cur_new_label)
|
224 |
+
new_labels = torch.stack(new_labels_align, dim=0)
|
225 |
+
|
226 |
+
# Attention Mask
|
227 |
+
if attention_mask is not None:
|
228 |
+
new_attention_mask = []
|
229 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
|
230 |
+
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
231 |
+
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
|
232 |
+
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
|
233 |
+
new_attention_mask.append(cur_new_attention_mask)
|
234 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
235 |
+
assert attention_mask.shape == new_labels.shape
|
236 |
+
else:
|
237 |
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
238 |
+
new_modality_indicators = torch.stack(new_modality_indicators, dim=0)
|
239 |
+
if labels is not None:
|
240 |
+
new_labels = torch.stack(new_labels, dim=0)
|
241 |
+
|
242 |
+
if attention_mask is not None:
|
243 |
+
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
244 |
+
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
|
245 |
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
246 |
+
return None, new_modality_indicators, attention_mask, past_key_values, new_input_embeds, new_labels
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
class MPLUGDocOwlLlamaModel(MPLUGDocOwlMetaModel, LlamaModel):
|
251 |
+
config_class = MPLUGDocOwlConfig
|
252 |
+
|
253 |
+
def __init__(self, config: MPLUGDocOwlConfig):
|
254 |
+
super(MPLUGDocOwlLlamaModel, self).__init__(config)
|
255 |
+
|
256 |
+
|
257 |
+
class MPLUGDocOwl2(LlamaForCausalLM, MPLUGDocOwlMetaForCausalLM):
|
258 |
+
config_class = MPLUGDocOwlConfig
|
259 |
+
|
260 |
+
def __init__(self, config):
|
261 |
+
super(LlamaForCausalLM, self).__init__(config)
|
262 |
+
self.model = MPLUGDocOwlLlamaModel(config)
|
263 |
+
|
264 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
265 |
+
|
266 |
+
# Initialize weights and apply final processing
|
267 |
+
self.post_init()
|
268 |
+
|
269 |
+
def init_processor(self, tokenizer, basic_image_size, crop_anchors):
|
270 |
+
self.processor = DocProcessor(tokenizer=tokenizer, image_size=basic_image_size, anchors=crop_anchors)
|
271 |
+
return self.processor
|
272 |
+
|
273 |
+
def get_model(self):
|
274 |
+
return self.model
|
275 |
+
|
276 |
+
def forward(
|
277 |
+
self,
|
278 |
+
input_ids: torch.LongTensor = None,
|
279 |
+
# modality_indicators: torch.LongTensor = None,
|
280 |
+
attention_mask: Optional[torch.Tensor] = None,
|
281 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
282 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
283 |
+
labels: Optional[torch.LongTensor] = None,
|
284 |
+
use_cache: Optional[bool] = None,
|
285 |
+
output_attentions: Optional[bool] = None,
|
286 |
+
output_hidden_states: Optional[bool] = None,
|
287 |
+
images: Optional[torch.FloatTensor] = None,
|
288 |
+
patch_positions: Optional[torch.LongTensor] = None,
|
289 |
+
return_dict: Optional[bool] = None,
|
290 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
291 |
+
|
292 |
+
# print('modeling_mplug_docow2.py patch_positions:', patch_positions)
|
293 |
+
|
294 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
295 |
+
output_hidden_states = (
|
296 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
297 |
+
)
|
298 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
299 |
+
input_ids, modality_indicators, attention_mask, past_key_values, inputs_embeds, labels = \
|
300 |
+
self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images, patch_positions)
|
301 |
+
# ic(inputs_embeds.shape, labels.shape)
|
302 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
303 |
+
outputs = self.model(
|
304 |
+
input_ids=input_ids,
|
305 |
+
modality_indicators=modality_indicators,
|
306 |
+
attention_mask=attention_mask,
|
307 |
+
past_key_values=past_key_values,
|
308 |
+
inputs_embeds=inputs_embeds,
|
309 |
+
use_cache=use_cache,
|
310 |
+
output_attentions=output_attentions,
|
311 |
+
output_hidden_states=output_hidden_states,
|
312 |
+
return_dict=return_dict
|
313 |
+
)
|
314 |
+
# ic(outputs[0].shape)
|
315 |
+
|
316 |
+
hidden_states = outputs[0]
|
317 |
+
logits = self.lm_head(hidden_states)
|
318 |
+
|
319 |
+
loss = None
|
320 |
+
if labels is not None:
|
321 |
+
# Shift so that tokens < n predict n
|
322 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
323 |
+
shift_labels = labels[..., 1:].contiguous()
|
324 |
+
# Flatten the tokens
|
325 |
+
loss_fct = CrossEntropyLoss()
|
326 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
327 |
+
shift_labels = shift_labels.view(-1)
|
328 |
+
# Enable model/pipeline parallelism
|
329 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
330 |
+
loss = loss_fct(shift_logits, shift_labels)
|
331 |
+
|
332 |
+
# ic(loss.shape)
|
333 |
+
|
334 |
+
if not return_dict:
|
335 |
+
output = (logits,) + outputs[1:]
|
336 |
+
return (loss,) + output if loss is not None else output
|
337 |
+
|
338 |
+
return CausalLMOutputWithPast(
|
339 |
+
loss=loss,
|
340 |
+
logits=logits,
|
341 |
+
past_key_values=outputs.past_key_values,
|
342 |
+
hidden_states=outputs.hidden_states,
|
343 |
+
attentions=outputs.attentions,
|
344 |
+
)
|
345 |
+
|
346 |
+
def prepare_inputs_for_generation(
|
347 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
348 |
+
):
|
349 |
+
if past_key_values:
|
350 |
+
input_ids = input_ids[:, -1:]
|
351 |
+
|
352 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
353 |
+
if inputs_embeds is not None and past_key_values is None:
|
354 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
355 |
+
else:
|
356 |
+
model_inputs = {"input_ids": input_ids}
|
357 |
+
|
358 |
+
model_inputs.update(
|
359 |
+
{
|
360 |
+
"past_key_values": past_key_values,
|
361 |
+
"use_cache": kwargs.get("use_cache"),
|
362 |
+
"attention_mask": attention_mask,
|
363 |
+
"images": kwargs.get("images", None),
|
364 |
+
"patch_positions": kwargs.get("patch_positions", None),
|
365 |
+
}
|
366 |
+
)
|
367 |
+
return model_inputs
|
368 |
+
|
369 |
+
def chat(self, messages, images, tokenizer):
|
370 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
371 |
+
|
372 |
+
image_tensor, patch_positions, input_ids = self.processor(images=images, messages=messages)
|
373 |
+
|
374 |
+
image_tensor = image_tensor.to(self.model.device, dtype=torch.float16)
|
375 |
+
patch_positions = patch_positions.to(self.model.device)
|
376 |
+
input_ids = input_ids.unsqueeze(0).to(self.model.device)
|
377 |
+
|
378 |
+
stopping_criteria = KeywordsStoppingCriteria(["</s>"], tokenizer, input_ids)
|
379 |
+
|
380 |
+
with torch.inference_mode():
|
381 |
+
output_ids = self.generate(
|
382 |
+
input_ids,
|
383 |
+
images=image_tensor,
|
384 |
+
patch_positions=patch_positions,
|
385 |
+
do_sample=False,
|
386 |
+
temperature=1.0,
|
387 |
+
max_new_tokens=512,
|
388 |
+
streamer=streamer,
|
389 |
+
use_cache=True,
|
390 |
+
stopping_criteria=[stopping_criteria])
|
391 |
+
|
392 |
+
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
393 |
+
|
394 |
+
return outputs.replace('</s>', '')
|
395 |
+
|
396 |
+
AutoConfig.register("mplug_docowl", MPLUGDocOwlConfig)
|
397 |
+
AutoModelForCausalLM.register(MPLUGDocOwlConfig, MPLUGDocOwl2)
|
398 |
+
|
preprocessor_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 448,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 448
|
19 |
+
}
|
20 |
+
|
processor.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from einops import rearrange, repeat
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image, ImageFile
|
5 |
+
import random
|
6 |
+
from torchvision.ops.boxes import box_area
|
7 |
+
|
8 |
+
from torchvision.transforms.transforms import InterpolationMode
|
9 |
+
from torchvision.transforms import functional as F
|
10 |
+
import numpy as np
|
11 |
+
from icecream import ic
|
12 |
+
import re
|
13 |
+
|
14 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
15 |
+
ImageFile.MAX_IMAGE_PIXELS = None
|
16 |
+
Image.MAX_IMAGE_PIXELS = None
|
17 |
+
|
18 |
+
from .constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
19 |
+
|
20 |
+
def box_iou(boxes1, area1, boxes2, eps=1e-5):
|
21 |
+
area2 = box_area(boxes2)
|
22 |
+
|
23 |
+
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
24 |
+
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
25 |
+
|
26 |
+
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
27 |
+
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
|
28 |
+
|
29 |
+
union = area1[:, None] + area2 - inter
|
30 |
+
|
31 |
+
iou = inter / (union+eps)
|
32 |
+
return iou, union
|
33 |
+
|
34 |
+
def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5):
|
35 |
+
# anchors x1 y1 x2 y2
|
36 |
+
|
37 |
+
# image_size: (h, w)
|
38 |
+
# xyxy
|
39 |
+
input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0)
|
40 |
+
|
41 |
+
boxes1 = anchors
|
42 |
+
boxes2 = input_image_bbox
|
43 |
+
boxes3 = anchors.clone()
|
44 |
+
# y2
|
45 |
+
boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou
|
46 |
+
|
47 |
+
area1 = anchors_areas
|
48 |
+
|
49 |
+
iou, _ = box_iou(boxes1, area1, boxes2)
|
50 |
+
iou = iou.squeeze(1)
|
51 |
+
shape_iou, _ = box_iou(boxes1, area1, boxes3)
|
52 |
+
shape_iou = shape_iou.diag()
|
53 |
+
# 优先匹配形状接近 再匹配分辨率接近
|
54 |
+
index = torch.argmax(shape_iou*100+iou,dim=0)
|
55 |
+
return index
|
56 |
+
|
57 |
+
class AnchorResize(torch.nn.Module):
|
58 |
+
|
59 |
+
def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None):
|
60 |
+
super().__init__()
|
61 |
+
# xyxy
|
62 |
+
self.anchors = torch.tensor(
|
63 |
+
[[0, 0, _[1]*image_size[1], _[0]*image_size[0]]
|
64 |
+
for _ in anchors], requires_grad=False
|
65 |
+
)
|
66 |
+
|
67 |
+
self.anchor_areas = box_area(self.anchors)
|
68 |
+
|
69 |
+
self.interpolation = interpolation
|
70 |
+
self.antialias = antialias
|
71 |
+
|
72 |
+
def forward(self, img, skip_resize=False):
|
73 |
+
"""
|
74 |
+
Args:
|
75 |
+
img (PIL Image or Tensor): Image to be scaled.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
PIL Image or Tensor: Rescaled image.
|
79 |
+
"""
|
80 |
+
selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
|
81 |
+
target_size = self.anchors[selected_anchor][2:].tolist() # w,h
|
82 |
+
if skip_resize:
|
83 |
+
# for debug
|
84 |
+
return selected_anchor
|
85 |
+
return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor
|
86 |
+
|
87 |
+
def __repr__(self) -> str:
|
88 |
+
detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})"
|
89 |
+
return f"{self.__class__.__name__}{detail}"
|
90 |
+
|
91 |
+
|
92 |
+
class DocProcessor():
|
93 |
+
def __init__(self, tokenizer=None, image_size=504, anchors='grid_12'):
|
94 |
+
self.media_token= "<|image|>"
|
95 |
+
# h,w
|
96 |
+
if isinstance(image_size, int):
|
97 |
+
image_size = (image_size, image_size)
|
98 |
+
self.image_size = image_size
|
99 |
+
# h,w
|
100 |
+
# anchors = grid_dict[anchors]
|
101 |
+
max_crop = int(anchors.split('_')[1])
|
102 |
+
anchors = [(j, int(i/j)) for i in range(1,max_crop+1) for j in range(1, i+1) if i%j==0]
|
103 |
+
self.anchors = [tuple(_) for _ in anchors]
|
104 |
+
self.anchor_max = max([max(_) for _ in self.anchors])
|
105 |
+
# xywh -> xyxy
|
106 |
+
self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC)
|
107 |
+
self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC)
|
108 |
+
self.image_transform = transforms.Compose([
|
109 |
+
transforms.ToTensor(),
|
110 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
111 |
+
])
|
112 |
+
self.tokenizer = tokenizer
|
113 |
+
|
114 |
+
def _process_image(self, images):
|
115 |
+
new_images = []
|
116 |
+
new_patch_position = []
|
117 |
+
num_image_mult = []
|
118 |
+
for image in images:
|
119 |
+
nocut_image = self.image_transform(self.old_resizer(image)).unsqueeze(0)
|
120 |
+
|
121 |
+
image, selected_anchor = self.resizer(image)
|
122 |
+
image_input = self.image_transform(image) # h,w,3 -> 3,h,w
|
123 |
+
# rearrange(x,'B C (n1 h) (n2 w) -> (B n1 n2) C h w', n1=self.down_sample[0], n2=self.down_sample[1])
|
124 |
+
image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1])
|
125 |
+
|
126 |
+
image_input = torch.cat([nocut_image, image_input], dim=0)
|
127 |
+
|
128 |
+
anchor = self.anchors[selected_anchor] # w,h
|
129 |
+
patch_position = torch.cat([
|
130 |
+
repeat(torch.arange(anchor[0]), 'num_h -> num_h num_w 1', num_w=anchor[1]),
|
131 |
+
repeat(torch.arange(anchor[1]), 'num_w -> num_h num_w 1', num_h=anchor[0])],dim=2)
|
132 |
+
patch_position = rearrange(patch_position, 'num_h num_w p-> (num_h num_w) p', p=2) # num_patch, (ph,pw)
|
133 |
+
|
134 |
+
patch_position = torch.cat([torch.ones(1,2).long()*self.anchor_max, patch_position], dim=0)
|
135 |
+
|
136 |
+
new_images.append(image_input)
|
137 |
+
new_patch_position.append(patch_position)
|
138 |
+
num_image_mult.append(patch_position.shape[0])
|
139 |
+
|
140 |
+
new_images = torch.cat(new_images,dim=0)
|
141 |
+
new_patch_position = torch.cat(new_patch_position, dim=0)
|
142 |
+
return new_images, new_patch_position, num_image_mult
|
143 |
+
|
144 |
+
def __call__(self, images=None, messages=None):
|
145 |
+
assert images is not None
|
146 |
+
# print(images)
|
147 |
+
|
148 |
+
## 1. process images
|
149 |
+
if not isinstance(images, list):
|
150 |
+
images = [images]
|
151 |
+
image_pils = []
|
152 |
+
for image in images:
|
153 |
+
if isinstance(image, str):
|
154 |
+
image = Image.open(image).convert('RGB')
|
155 |
+
else:
|
156 |
+
|
157 |
+
image = image.convert('RGB')
|
158 |
+
# ic(image.size)
|
159 |
+
image_pils.append(image)
|
160 |
+
|
161 |
+
image_data, patch_position, num_image_mult = self._process_image(image_pils)
|
162 |
+
|
163 |
+
## 2. process text
|
164 |
+
# 2.1 add image ordinal token (e.g. <img 1>) before image placeholder <|image|>
|
165 |
+
image_index = 1 # start from 1
|
166 |
+
for m in messages:
|
167 |
+
try:
|
168 |
+
assert m['role'] in ['USER', 'ASSISTANT']
|
169 |
+
except Exception as e:
|
170 |
+
print("Unexpected role: "+m['role']+", only support 'USER' or 'ASSISTANT'")
|
171 |
+
exit(0)
|
172 |
+
|
173 |
+
if m['role'] == 'USER' and self.media_token in m.get('content', ''):
|
174 |
+
pattern = '|'.join(map(re.escape, [self.media_token]))
|
175 |
+
text_list = re.split(f'({pattern})', m['content'])
|
176 |
+
text = ''
|
177 |
+
for x in text_list:
|
178 |
+
if x == '<|image|>':
|
179 |
+
text += '<img '+str(image_index)+'><|image|>'
|
180 |
+
image_index += 1
|
181 |
+
else:
|
182 |
+
text += x
|
183 |
+
m['content'] = text
|
184 |
+
|
185 |
+
if messages[-1]['role'] == 'USER':
|
186 |
+
messages.append({'role':'ASSISTANT'})
|
187 |
+
else:
|
188 |
+
try:
|
189 |
+
assert messages[-1].get('content', '') == ''
|
190 |
+
except Exception as e:
|
191 |
+
print("Unexpected end message: "+str(messages[-1]), "only (role=='USER') or (role=='ASSISTANT' and content=='') are expected.")
|
192 |
+
exit(0)
|
193 |
+
|
194 |
+
# print('after adding img ordinal token: ', messages)
|
195 |
+
# 2.2 text tokenize
|
196 |
+
seps = [' ', '</s>']
|
197 |
+
prompt = ""
|
198 |
+
for i, m in enumerate(messages):
|
199 |
+
if 'content' in m:
|
200 |
+
prompt += m['role'] + ": " + m['content'] + seps[i % 2]
|
201 |
+
else:
|
202 |
+
prompt += m['role'] + ":"
|
203 |
+
ic(prompt)
|
204 |
+
assert self.media_token in prompt
|
205 |
+
input_ids = self.tokenizer_token(prompt)
|
206 |
+
|
207 |
+
return image_data, patch_position, input_ids
|
208 |
+
|
209 |
+
|
210 |
+
def tokenizer_token(self, prompt):
|
211 |
+
prompt_chunks = [self.tokenizer(chunk).input_ids if len(chunk) > 0 else [] for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)]
|
212 |
+
|
213 |
+
def insert_separator(X, sep):
|
214 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
215 |
+
|
216 |
+
input_ids = []
|
217 |
+
offset = 0
|
218 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == self.tokenizer.bos_token_id:
|
219 |
+
offset = 1
|
220 |
+
input_ids.append(prompt_chunks[0][0])
|
221 |
+
|
222 |
+
for x in insert_separator(prompt_chunks, [IMAGE_TOKEN_INDEX] * (offset + 1)):
|
223 |
+
input_ids.extend(x[offset:])
|
224 |
+
|
225 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
226 |
+
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": false,
|
22 |
+
"model_max_length": 4096,
|
23 |
+
"pad_token": null,
|
24 |
+
"padding_side": "right",
|
25 |
+
"sp_model_kwargs": {},
|
26 |
+
"tokenizer_class": "LlamaTokenizer",
|
27 |
+
"unk_token": {
|
28 |
+
"__type": "AddedToken",
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
visual_compressor.py
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Any, Optional, Tuple, Union
|
3 |
+
|
4 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions
|
5 |
+
from transformers.modeling_utils import PreTrainedModel
|
6 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from icecream import ic
|
13 |
+
|
14 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
|
15 |
+
from einops import rearrange
|
16 |
+
|
17 |
+
|
18 |
+
class MplugDocOwlVisualMLP(nn.Module):
|
19 |
+
def __init__(self, config):
|
20 |
+
super().__init__()
|
21 |
+
self.config = config
|
22 |
+
in_features = config.high_reso_cross_hid_size
|
23 |
+
self.act = nn.SiLU()
|
24 |
+
|
25 |
+
ffn_hidden_size = int(2 * 4 * in_features / 3)
|
26 |
+
multiple_of = 256
|
27 |
+
ffn_hidden_size = multiple_of * ((ffn_hidden_size + multiple_of - 1) // multiple_of)
|
28 |
+
|
29 |
+
self.w1 = nn.Linear(in_features, ffn_hidden_size)
|
30 |
+
self.w2 = nn.Linear(ffn_hidden_size, in_features)
|
31 |
+
self.w3 = nn.Linear(in_features, ffn_hidden_size)
|
32 |
+
self.ffn_ln = nn.LayerNorm(ffn_hidden_size, eps=config.layer_norm_eps)
|
33 |
+
|
34 |
+
torch.nn.init.zeros_(self.w1.bias.data)
|
35 |
+
torch.nn.init.zeros_(self.w2.bias.data)
|
36 |
+
torch.nn.init.zeros_(self.w3.bias.data)
|
37 |
+
|
38 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
39 |
+
hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states)
|
40 |
+
hidden_states = self.ffn_ln(hidden_states)
|
41 |
+
hidden_states = self.w2(hidden_states)
|
42 |
+
return hidden_states
|
43 |
+
|
44 |
+
|
45 |
+
class FlashCrossAttention(torch.nn.Module):
|
46 |
+
"""Implement the scaled dot product attention with softmax.
|
47 |
+
Arguments
|
48 |
+
---------
|
49 |
+
softmax_scale: The temperature to use for the softmax attention.
|
50 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
51 |
+
runtime)
|
52 |
+
attention_dropout: The dropout rate to apply to the attention
|
53 |
+
(default: 0.0)
|
54 |
+
"""
|
55 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
|
56 |
+
device=None, dtype=None):
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
self.softmax_scale = softmax_scale
|
60 |
+
self.dropout_p = attention_dropout
|
61 |
+
|
62 |
+
def forward(self, q, k, v, **kwargs):
|
63 |
+
"""Implements the multihead softmax attention.
|
64 |
+
Arguments
|
65 |
+
---------
|
66 |
+
q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
|
67 |
+
|
68 |
+
or
|
69 |
+
|
70 |
+
q: (Sum_q, H, D), k,v : (Sum_k, H, D),
|
71 |
+
must with batch_size, max_seqlen_q, max_seqlen_k, cu_seqlens_q, cu_seqlens_k in kwargs
|
72 |
+
"""
|
73 |
+
|
74 |
+
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
|
75 |
+
assert all((i.is_cuda for i in (q,k,v)))
|
76 |
+
|
77 |
+
|
78 |
+
if q.dim() == 4:
|
79 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
80 |
+
q = rearrange(q, 'b s ... -> (b s) ...')
|
81 |
+
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
|
82 |
+
device=q.device)
|
83 |
+
else:
|
84 |
+
batch_size, seqlen_q = kwargs['batch_size'], kwargs['max_seqlen_q']
|
85 |
+
cu_seqlens_q = kwargs['cu_seqlens_q']
|
86 |
+
|
87 |
+
if k.dim() == 4:
|
88 |
+
seqlen_k = k.shape[1]
|
89 |
+
k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [k, v]]
|
90 |
+
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
|
91 |
+
device=q.device)
|
92 |
+
else:
|
93 |
+
seqlen_k = kwargs['max_seqlen_k']
|
94 |
+
cu_seqlens_k = kwargs['cu_seqlens_k']
|
95 |
+
|
96 |
+
# q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
|
97 |
+
# self.dropout_p = 0
|
98 |
+
|
99 |
+
"""print('FlashCrossAttention: q.shape:', q.shape)
|
100 |
+
print('FlashCrossAttention: k.shape:', k.shape)
|
101 |
+
print('FlashCrossAttention: v.shape:', v.shape)
|
102 |
+
print('FlashCrossAttention: cu_seqlens_q:', cu_seqlens_q)
|
103 |
+
print('FlashCrossAttention: cu_seqlens_k:', cu_seqlens_k)"""
|
104 |
+
|
105 |
+
# print('visual_compressor.py q.shape:', q.shape, ' k.shape:', k.shape, ' v.shape:', v.shape)
|
106 |
+
output = flash_attn_unpadded_func(
|
107 |
+
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
|
108 |
+
self.dropout_p if self.training else 0.0,
|
109 |
+
softmax_scale=self.softmax_scale, causal=False
|
110 |
+
)
|
111 |
+
|
112 |
+
if q.dim() == 4: # keep the shape of output shape same as the input query
|
113 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
114 |
+
return output
|
115 |
+
|
116 |
+
|
117 |
+
class MplugDocOwlVisualMultiHeadAttention(nn.Module):
|
118 |
+
def __init__(self, config):
|
119 |
+
super().__init__()
|
120 |
+
self.config = config
|
121 |
+
if config.high_reso_cross_hid_size % config.high_reso_cross_num_att_heads != 0:
|
122 |
+
raise ValueError(
|
123 |
+
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
124 |
+
% (config.high_reso_cross_hid_size, config.high_reso_cross_num_att_heads)
|
125 |
+
)
|
126 |
+
if config.high_reso_cross_hid_size // config.high_reso_cross_num_att_heads > 256:
|
127 |
+
raise ValueError(
|
128 |
+
"The hidden size of each head (%d) > 256 and is illegal for flash attention"
|
129 |
+
% (config.high_reso_cross_hid_size // config.high_reso_cross_num_att_heads)
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
self.num_attention_heads = config.high_reso_cross_num_att_heads
|
134 |
+
self.attention_head_size = int(config.high_reso_cross_hid_size / config.high_reso_cross_num_att_heads)
|
135 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
136 |
+
|
137 |
+
self.query = nn.Linear(config.high_reso_cross_hid_size, self.all_head_size)
|
138 |
+
self.key = nn.Linear(config.high_reso_cross_hid_size, self.all_head_size)
|
139 |
+
self.value = nn.Linear(config.high_reso_cross_hid_size, self.all_head_size)
|
140 |
+
self.core_attention_flash = FlashCrossAttention(attention_dropout=config.high_reso_cross_dropout)
|
141 |
+
|
142 |
+
# bias init
|
143 |
+
torch.nn.init.zeros_(self.query.bias.data)
|
144 |
+
torch.nn.init.zeros_(self.key.bias.data)
|
145 |
+
torch.nn.init.zeros_(self.value.bias.data)
|
146 |
+
|
147 |
+
def transpose_for_scores(self, x):
|
148 |
+
# [B, S, D] -> [B, S, H, D] or [Sum_S, D] -> [Sum_S, H, D]
|
149 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
150 |
+
x = x.view(*new_x_shape)
|
151 |
+
return x
|
152 |
+
|
153 |
+
def forward(
|
154 |
+
self,
|
155 |
+
hidden_states,
|
156 |
+
encoder_hidden_states=None,
|
157 |
+
**kwargs
|
158 |
+
):
|
159 |
+
# assert not torch.isnan(hidden_states).any()
|
160 |
+
# assert not torch.isnan(encoder_hidden_states).any()
|
161 |
+
|
162 |
+
key = self.transpose_for_scores(self.key(encoder_hidden_states))
|
163 |
+
value = self.transpose_for_scores(self.value(encoder_hidden_states))
|
164 |
+
query = self.transpose_for_scores(self.query(hidden_states))
|
165 |
+
# print('visual_compressor.py key(after projection): ', key.shape, key)
|
166 |
+
# print('visual_compressor.py value(after projection): ', value.shape, value)
|
167 |
+
# print('visual_compressor.py query(after projection): ', query.shape, query)
|
168 |
+
# assert not torch.isnan(key).any()
|
169 |
+
# assert not torch.isnan(value).any()
|
170 |
+
# assert not torch.isnan(query).any()
|
171 |
+
outputs = self.core_attention_flash(q=query, k=key, v=value, **kwargs)
|
172 |
+
outputs = rearrange(outputs, 's h d -> s (h d)').contiguous()
|
173 |
+
# print('visual_compressor.py outputs(after cross_att): ', outputs.shape, outputs)
|
174 |
+
return outputs
|
175 |
+
|
176 |
+
|
177 |
+
class MplugDocOwlVisualCrossOutput(nn.Module):
|
178 |
+
def __init__(self, config):
|
179 |
+
super().__init__()
|
180 |
+
dim = config.high_reso_cross_hid_size
|
181 |
+
self.out_proj = nn.Linear(dim, dim, bias=True)
|
182 |
+
self.norm2 = nn.LayerNorm(dim)
|
183 |
+
self.mlp = MplugDocOwlVisualMLP(config)
|
184 |
+
|
185 |
+
# bias init
|
186 |
+
torch.nn.init.zeros_(self.out_proj.bias.data)
|
187 |
+
|
188 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
189 |
+
input_tensor = input_tensor + self.out_proj(hidden_states)
|
190 |
+
input_tensor = input_tensor + self.mlp(self.norm2(input_tensor))
|
191 |
+
return input_tensor
|
192 |
+
|
193 |
+
|
194 |
+
class MplugDocOwlVisualCrossAttentionLayer(nn.Module):
|
195 |
+
def __init__(self, config):
|
196 |
+
super().__init__()
|
197 |
+
self.attention = MplugDocOwlVisualMultiHeadAttention(config)
|
198 |
+
self.output = MplugDocOwlVisualCrossOutput(config)
|
199 |
+
self.norm1 = nn.LayerNorm(config.high_reso_cross_hid_size)
|
200 |
+
self.normk = nn.LayerNorm(config.high_reso_cross_hid_size)
|
201 |
+
|
202 |
+
def forward(
|
203 |
+
self,
|
204 |
+
hidden_states: torch.Tensor,
|
205 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
206 |
+
**kwargs
|
207 |
+
) -> Tuple[torch.Tensor]:
|
208 |
+
# print('visual_compressor.py hidden_states: ', hidden_states.shape, hidden_states)
|
209 |
+
# print('visual_compressor.py encoder_hidden_states: ', encoder_hidden_states.shape, encoder_hidden_states)
|
210 |
+
# assert not torch.isnan(hidden_states).any()
|
211 |
+
# assert not torch.isnan(encoder_hidden_states).any()
|
212 |
+
hidden_states = self.norm1(hidden_states)
|
213 |
+
encoder_hidden_states = self.normk(encoder_hidden_states)
|
214 |
+
# print('visual_compressor.py hidden_states(after norm): ', hidden_states.shape, hidden_states)
|
215 |
+
# print('visual_compressor.py encoder_hidden_states(after norm): ', encoder_hidden_states.shape, encoder_hidden_states)
|
216 |
+
attention_output = self.attention(
|
217 |
+
hidden_states,
|
218 |
+
encoder_hidden_states,
|
219 |
+
**kwargs
|
220 |
+
)
|
221 |
+
|
222 |
+
outputs = self.output(attention_output, hidden_states)
|
223 |
+
|
224 |
+
return outputs
|
225 |
+
|
226 |
+
|
227 |
+
class MplugDocOwlVisualCrossAttentionEncoder(nn.Module):
|
228 |
+
def __init__(self, config):
|
229 |
+
super().__init__()
|
230 |
+
self.config = config
|
231 |
+
self.layer_num = config.layer
|
232 |
+
self.layers = nn.ModuleList(
|
233 |
+
[MplugDocOwlVisualCrossAttentionLayer(config) for layer_idx in range(self.layer_num)]
|
234 |
+
)
|
235 |
+
self.gradient_checkpointing = True
|
236 |
+
|
237 |
+
def forward(
|
238 |
+
self,
|
239 |
+
hidden_states: torch.Tensor,
|
240 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
241 |
+
**kwargs
|
242 |
+
):
|
243 |
+
for i in range(self.layer_num):
|
244 |
+
layer_module = self.layers[i]
|
245 |
+
layer_outputs = layer_module(
|
246 |
+
hidden_states,
|
247 |
+
encoder_hidden_states,
|
248 |
+
**kwargs
|
249 |
+
)
|
250 |
+
hidden_states = layer_outputs
|
251 |
+
|
252 |
+
return hidden_states
|
253 |
+
|
254 |
+
|
255 |
+
def ensemble_crop_feats(crop_feats, patch_positions, col_feat_num):
|
256 |
+
"""
|
257 |
+
ensemble vision feats from different crops to a feature map according the position of the raw image
|
258 |
+
crop_feats: [N_crop, Len_feat, D]
|
259 |
+
patch_positions: [N_crop, 2], 2 == (rowl_index, col_index)
|
260 |
+
col_feat_num: the feature num of a row in a crop image
|
261 |
+
"""
|
262 |
+
assert crop_feats.size(0) == patch_positions.size(0)
|
263 |
+
row_feats = []
|
264 |
+
crop_row = torch.max(patch_positions[:,0])+1 #
|
265 |
+
crop_feats = rearrange(crop_feats, '(R C) L D -> R C L D', R=crop_row) # [N_crop_row, N_crop_col, Len_feat, D]
|
266 |
+
crop_feats = rearrange(crop_feats, 'R C (X Y) D-> R C X Y D', Y=col_feat_num) # [N_crop_row, N_crop_col, Len_row_feat, Len_col_feat, D]
|
267 |
+
# 1. concatenate same row feats across crops; 2. ensemble row feats to get 1 feature map
|
268 |
+
hw_feats = rearrange(crop_feats, 'R C X Y D-> (R X) (C Y) D') # [N_crop_row x Len_row_feat, N_crop_col x Len_col_feat, D]
|
269 |
+
|
270 |
+
return hw_feats
|
271 |
+
|
272 |
+
def group_window_feats(feats, window):
|
273 |
+
"""
|
274 |
+
collect vision feats from a window (win_row, win_col) to 1 group
|
275 |
+
feats: [H, W, D]
|
276 |
+
window: (win_row, win_col)
|
277 |
+
|
278 |
+
return: [H/win_row, H/win_col, win_row x win_col, D]
|
279 |
+
"""
|
280 |
+
|
281 |
+
group_feats = rearrange(feats, '(X R) (Y C) D -> (X Y) (R C) D', R=window[0], C=window[1]) # [H/win_row x H/win_col, win_row x win_col, D]
|
282 |
+
return group_feats
|
283 |
+
|
284 |
+
|
285 |
+
def distinguish_global_crop_features(hidden_states, patch_positions, reorganize_crop_feats=True, col_feat_num=None, group_feats_by_crop_shape=False, keep_row_col=False):
|
286 |
+
"""
|
287 |
+
distinguish global and crop features with the help of patcg_positions
|
288 |
+
# hidden_states: [B, s+1, h]
|
289 |
+
# (B is the sum of cropped num across samples in a micro_batch, s is the visual tokens, +1 means the vit end token)
|
290 |
+
# patch_positions: [B, 2],
|
291 |
+
# 2 == (rowl_index, col_index), the first crop is (0,0), global img is (anchor_max, anchor_max)
|
292 |
+
|
293 |
+
col_feat_num is used when reorganize_crop_feats == True
|
294 |
+
|
295 |
+
outputs:
|
296 |
+
img_global_features: list of [Len_global_feat, D]
|
297 |
+
img_crop_features: list of [Len_global_feat, D]
|
298 |
+
"""
|
299 |
+
hidden_states = hidden_states[:, :-1, :] # remove the last vit end token emb
|
300 |
+
# the first crop is (0,0)
|
301 |
+
first_crop_indices = (patch_positions.sum(dim=-1) == 0).nonzero().squeeze(1) # Num_img
|
302 |
+
# the global image is before the first crop
|
303 |
+
global_indices = first_crop_indices - 1 # Num_img
|
304 |
+
# print('vision2text_model.py patch_positions:', patch_positions)
|
305 |
+
# print('vision2text_model.py global_indices:', global_indices)
|
306 |
+
# collect cropped vision features of an identical image
|
307 |
+
batch_size = hidden_states.size(0)
|
308 |
+
img_global_features = []
|
309 |
+
img_crop_features = [] # store list of Num_crop (variable) x Len_feat (fixed)
|
310 |
+
img_crop_positions = [] # store list of Num_crop (variable) x 2
|
311 |
+
for i in range(len(global_indices)):
|
312 |
+
index = global_indices[i]
|
313 |
+
img_global_features.append(hidden_states[index])
|
314 |
+
if i == (len(global_indices)-1):
|
315 |
+
img_crop_features.append(hidden_states[index+1:])
|
316 |
+
img_crop_positions.append(patch_positions[index+1:])
|
317 |
+
else:
|
318 |
+
next_index = global_indices[i+1]
|
319 |
+
img_crop_features.append(hidden_states[index+1:next_index])
|
320 |
+
img_crop_positions.append(patch_positions[index+1:next_index])
|
321 |
+
|
322 |
+
if reorganize_crop_feats:
|
323 |
+
for i in range(len(img_crop_features)):
|
324 |
+
img_crop_features[i] = ensemble_crop_feats(img_crop_features[i], img_crop_positions[i], col_feat_num) # [H W D]
|
325 |
+
if group_feats_by_crop_shape: # collect vision feats from a window (crop_row, crop_col) to 1 group
|
326 |
+
crop_row = torch.max(img_crop_positions[i][:,0])+1 #
|
327 |
+
crop_col = torch.max(img_crop_positions[i][:,1])+1 #
|
328 |
+
img_crop_features[i] = group_window_feats(img_crop_features[i], window=(crop_row, crop_col)) # [H/crop_row x W/crop_col, crop_row x crop_row, D]
|
329 |
+
else:
|
330 |
+
# img_crop_features = [rearrange(x, 'H W D -> (H W) D') for x in img_crop_features]
|
331 |
+
if not keep_row_col:
|
332 |
+
img_crop_featuress[i] = rearrange(img_crop_featuress[i], 'H W D -> (H W) D')
|
333 |
+
else:
|
334 |
+
img_crop_features = [rearrange(x, 'N L D -> (N L) D') for x in img_crop_features]
|
335 |
+
|
336 |
+
return img_global_features, img_crop_features
|
337 |
+
|
338 |
+
|
339 |
+
class MplugDocOwlHRDocCompressor(PreTrainedModel):
|
340 |
+
"""
|
341 |
+
After vision-to-text module, use low-resolution global features to select high-resolution crop features with cross-attention
|
342 |
+
the key/value from high-resolution crop features are contrained in a window size
|
343 |
+
positions of the features within the window in raw images are the same as the global query features
|
344 |
+
"""
|
345 |
+
def __init__(self, config, output_hidden_size, v2t_img_col_tokens):
|
346 |
+
super().__init__(config)
|
347 |
+
self.use_flash_attn = True
|
348 |
+
assert self.use_flash_attn
|
349 |
+
|
350 |
+
self.v2t_img_col_tokens = v2t_img_col_tokens
|
351 |
+
|
352 |
+
self.compressor_crossatt = MplugDocOwlVisualCrossAttentionEncoder(config)
|
353 |
+
|
354 |
+
self.compressor_fc = torch.nn.Linear(output_hidden_size, output_hidden_size)
|
355 |
+
|
356 |
+
self.compressor_eos = torch.nn.Parameter(torch.randn(1, 1, output_hidden_size))
|
357 |
+
|
358 |
+
|
359 |
+
def forward(self, hidden_states, patch_positions=None):
|
360 |
+
# hidden_states: outputs of vision2textmodel: [Sum(crop), s+1, h]
|
361 |
+
# (Sum(crop) is the sum of cropped num across samples in a micro_batch, s is the visual tokens, +1 is the special vit_eos token added in H-Reducer)
|
362 |
+
# patch_positions: [Sum(crop), 2]
|
363 |
+
|
364 |
+
# print('visual_compressor.py HRDocCompressor hidden_states.shape:', hidden_states.shape)
|
365 |
+
# print('visual_compressor.py HRDocCompressor patch_positions.shape:', patch_positions.shape)
|
366 |
+
|
367 |
+
# N_img x [L_global (fixed), D], N_img x [L_global (fixed), Crop_row x Crop_Col (Variable), D]
|
368 |
+
img_global_features, img_crop_features = distinguish_global_crop_features(hidden_states,
|
369 |
+
patch_positions,
|
370 |
+
reorganize_crop_feats=True,
|
371 |
+
col_feat_num=self.v2t_img_col_tokens,
|
372 |
+
group_feats_by_crop_shape=True)
|
373 |
+
|
374 |
+
# cross-attention to accumulate high-resolution features
|
375 |
+
# if self.use_flash_attn: # flash_attn_varlen_func don't need to pad crop_features
|
376 |
+
img_global_features = torch.stack(img_global_features, dim=0).to(hidden_states.device) # Num_img x Len_global_feat x D
|
377 |
+
batch_size, global_feat_num, seqlen_q = img_global_features.shape[0], img_global_features.shape[1], 1
|
378 |
+
img_global_features = rearrange(img_global_features, 'b s ... -> (b s) ...')
|
379 |
+
cu_seqlens_q = torch.arange(0, batch_size*global_feat_num+1, step=1, dtype=torch.int32, device=img_global_features.device) # # (Num_img x Len_global_feat +1, )
|
380 |
+
cu_seqlens_k = [0]
|
381 |
+
max_seqlens_k = 0
|
382 |
+
for crop_feat in img_crop_features:
|
383 |
+
for i in range(crop_feat.shape[0]):
|
384 |
+
cu_seqlens_k.append(cu_seqlens_k[-1]+crop_feat.shape[1]) # same k within a image shares the seq len
|
385 |
+
max_seqlens_k = max(max_seqlens_k, crop_feat.size(1))
|
386 |
+
|
387 |
+
cu_seqlens_k = torch.tensor(cu_seqlens_k, dtype=torch.int32).to(hidden_states.device) # (Num_img x Len_global_feat+1, )
|
388 |
+
# cu_seqlens_k = torch.arange(0, (batch_size + 1) * max_seqlens_k, step=max_seqlens_k, dtype=torch.int32, device=img_global_features.device) # # (Num_img+1, )
|
389 |
+
|
390 |
+
img_crop_features = torch.cat([rearrange(x, 'N L D -> (N L) D') for x in img_crop_features], dim=0).to(hidden_states.device) # Sum(L_hr) x D
|
391 |
+
flash_kwargs = {
|
392 |
+
'batch_size': batch_size*global_feat_num, # each feat in global feats use different keys
|
393 |
+
'max_seqlen_q': seqlen_q, # key are unique for each query
|
394 |
+
'max_seqlen_k': max_seqlens_k,
|
395 |
+
'cu_seqlens_q': cu_seqlens_q, # the seq len of each q
|
396 |
+
'cu_seqlens_k': cu_seqlens_k # the seq len of each k
|
397 |
+
}
|
398 |
+
# print('visual_compressor.py HRDocCompressor img_global_features.shape:', img_global_features.shape, img_global_features)
|
399 |
+
# print('visual_compressor.py HRDocCompressor img_crop_features.shape:', img_crop_features.shape, img_crop_features)
|
400 |
+
"""print('visual_compressor.py HRDocCompressor cu_seqlens_q, cu_seqlens_q.shape:', cu_seqlens_q, cu_seqlens_q.shape)
|
401 |
+
print('visual_compressor.py HRDocCompressor cu_seqlens_k, cu_seqlens_k.shape:', cu_seqlens_k, cu_seqlens_k.shape)"""
|
402 |
+
# assert not torch.isnan(img_global_features).any()
|
403 |
+
# assert not torch.isnan(img_crop_features).any()
|
404 |
+
for x_name, x in self.compressor_crossatt.named_parameters():
|
405 |
+
try:
|
406 |
+
assert not torch.isnan(x).any()
|
407 |
+
# print('visual_compressor.py ', x_name, x.shape, x)
|
408 |
+
except Exception as e:
|
409 |
+
print(e)
|
410 |
+
print('visual_compressor.py nan', x_name, x.shape, x)
|
411 |
+
hidden_states = self.compressor_crossatt(
|
412 |
+
img_global_features.contiguous(), # Sum(L_global) x D
|
413 |
+
img_crop_features.contiguous(), # Sum(L_hr) x D
|
414 |
+
**flash_kwargs
|
415 |
+
) # Sum(L_global) x D
|
416 |
+
hidden_states = rearrange(hidden_states, '(B S) D -> S B D', B=batch_size) # L_global x N_img x D
|
417 |
+
|
418 |
+
hidden_states = self.compressor_fc(hidden_states) # L_global x N_img x D
|
419 |
+
|
420 |
+
hidden_states = hidden_states.transpose(0, 1).contiguous() # N_img x L_global x D
|
421 |
+
# print('visual_compressor.py hidden_states:', hidden_states.shape)
|
422 |
+
|
423 |
+
hidden_states = torch.cat([hidden_states, self.compressor_eos.repeat(hidden_states.shape[0], 1, 1)], dim=1) # N_img x (L_global+1) x D
|
424 |
+
# print('visual_compressor.py HRDocCompressor hidden_states.shape:', hidden_states.shape)
|
425 |
+
|
426 |
+
return hidden_states
|
visual_encoder.py
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Any, Optional, Tuple, Union
|
3 |
+
|
4 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions
|
5 |
+
from transformers.modeling_utils import PreTrainedModel
|
6 |
+
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from icecream import ic
|
13 |
+
import einops
|
14 |
+
from einops import rearrange
|
15 |
+
|
16 |
+
def get_abs_pos(abs_pos, tgt_size):
|
17 |
+
# abs_pos: L, C
|
18 |
+
# tgt_size: M
|
19 |
+
# return: M, C
|
20 |
+
src_size = int(math.sqrt(abs_pos.size(0)))
|
21 |
+
tgt_size = int(math.sqrt(tgt_size))
|
22 |
+
dtype = abs_pos.dtype
|
23 |
+
|
24 |
+
if src_size != tgt_size:
|
25 |
+
return F.interpolate(
|
26 |
+
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
27 |
+
size=(tgt_size, tgt_size),
|
28 |
+
mode="bicubic",
|
29 |
+
align_corners=False,
|
30 |
+
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
31 |
+
else:
|
32 |
+
return abs_pos
|
33 |
+
|
34 |
+
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
35 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
36 |
+
"""
|
37 |
+
grid_size: int of the grid height and width
|
38 |
+
return:
|
39 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
40 |
+
"""
|
41 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
42 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
43 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
44 |
+
grid = np.stack(grid, axis=0)
|
45 |
+
|
46 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
47 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
48 |
+
if cls_token:
|
49 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
50 |
+
return pos_embed
|
51 |
+
|
52 |
+
|
53 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
54 |
+
assert embed_dim % 2 == 0
|
55 |
+
|
56 |
+
# use half of dimensions to encode grid_h
|
57 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
58 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
59 |
+
|
60 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
61 |
+
return emb
|
62 |
+
|
63 |
+
|
64 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
65 |
+
"""
|
66 |
+
embed_dim: output dimension for each position
|
67 |
+
pos: a list of positions to be encoded: size (M,)
|
68 |
+
out: (M, D)
|
69 |
+
"""
|
70 |
+
assert embed_dim % 2 == 0
|
71 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
72 |
+
omega /= embed_dim / 2.
|
73 |
+
omega = 1. / 10000**omega # (D/2,)
|
74 |
+
|
75 |
+
pos = pos.reshape(-1) # (M,)
|
76 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
77 |
+
|
78 |
+
emb_sin = np.sin(out) # (M, D/2)
|
79 |
+
emb_cos = np.cos(out) # (M, D/2)
|
80 |
+
|
81 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
82 |
+
return emb
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
class MplugOwlVisionEmbeddings(nn.Module):
|
87 |
+
def __init__(self, config):
|
88 |
+
super().__init__()
|
89 |
+
self.config = config
|
90 |
+
self.hidden_size = config.hidden_size
|
91 |
+
self.image_size = config.image_size
|
92 |
+
self.patch_size = config.patch_size
|
93 |
+
|
94 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size))
|
95 |
+
|
96 |
+
self.patch_embed = nn.Conv2d(
|
97 |
+
in_channels=3,
|
98 |
+
out_channels=self.hidden_size,
|
99 |
+
kernel_size=self.patch_size,
|
100 |
+
stride=self.patch_size,
|
101 |
+
bias=False,
|
102 |
+
)
|
103 |
+
|
104 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
105 |
+
|
106 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size))
|
107 |
+
|
108 |
+
self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
109 |
+
|
110 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
111 |
+
batch_size = pixel_values.size(0)
|
112 |
+
image_embeds = self.patch_embed(pixel_values)
|
113 |
+
image_embeds = image_embeds.flatten(2).transpose(1, 2)
|
114 |
+
|
115 |
+
class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype)
|
116 |
+
embeddings = torch.cat([class_embeds, image_embeds], dim=1)
|
117 |
+
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype)
|
118 |
+
embeddings = self.pre_layernorm(embeddings)
|
119 |
+
return embeddings
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
class MplugOwlVisionAttention(nn.Module):
|
124 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
125 |
+
|
126 |
+
def __init__(self, config):
|
127 |
+
super().__init__()
|
128 |
+
self.config = config
|
129 |
+
self.hidden_size = config.hidden_size
|
130 |
+
self.num_heads = config.num_attention_heads
|
131 |
+
self.head_dim = self.hidden_size // self.num_heads
|
132 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
133 |
+
raise ValueError(
|
134 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
135 |
+
f" {self.num_heads})."
|
136 |
+
)
|
137 |
+
self.scale = self.head_dim**-0.5
|
138 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
139 |
+
|
140 |
+
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size)
|
141 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
142 |
+
|
143 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
144 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
145 |
+
|
146 |
+
def forward(
|
147 |
+
self,
|
148 |
+
hidden_states: torch.Tensor,
|
149 |
+
head_mask: Optional[torch.Tensor] = None,
|
150 |
+
output_attentions: Optional[bool] = False,
|
151 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
152 |
+
"""Input shape: Batch x Time x Channel"""
|
153 |
+
|
154 |
+
bsz, seq_len, embed_dim = hidden_states.size()
|
155 |
+
|
156 |
+
mixed_qkv = self.query_key_value(hidden_states)
|
157 |
+
|
158 |
+
mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute(
|
159 |
+
3, 0, 2, 1, 4
|
160 |
+
) # [3, b, np, sq, hn]
|
161 |
+
query_states, key_states, value_states = (
|
162 |
+
mixed_qkv[0],
|
163 |
+
mixed_qkv[1],
|
164 |
+
mixed_qkv[2],
|
165 |
+
)
|
166 |
+
# if self.config.use_flash_attn and flash_attn_func is not None:
|
167 |
+
if False:
|
168 |
+
# [b*sq, np, hn]
|
169 |
+
query_states = query_states.permute(0, 2, 1, 3).contiguous()
|
170 |
+
query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1)
|
171 |
+
|
172 |
+
key_states = key_states.permute(0, 2, 1, 3).contiguous()
|
173 |
+
key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1)
|
174 |
+
|
175 |
+
value_states = value_states.permute(0, 2, 1, 3).contiguous()
|
176 |
+
value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1)
|
177 |
+
|
178 |
+
cu_seqlens = torch.arange(
|
179 |
+
0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device
|
180 |
+
)
|
181 |
+
|
182 |
+
context_layer = flash_attn_func(
|
183 |
+
query_states,
|
184 |
+
key_states,
|
185 |
+
value_states,
|
186 |
+
cu_seqlens,
|
187 |
+
cu_seqlens,
|
188 |
+
seq_len,
|
189 |
+
seq_len,
|
190 |
+
self.dropout if self.training else 0.0,
|
191 |
+
softmax_scale=self.scale,
|
192 |
+
causal=False,
|
193 |
+
return_attn_probs=False,
|
194 |
+
)
|
195 |
+
# [b*sq, np, hn] => [b, sq, np, hn]
|
196 |
+
context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2))
|
197 |
+
else:
|
198 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
199 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
200 |
+
|
201 |
+
attention_scores = attention_scores * self.scale
|
202 |
+
|
203 |
+
# Normalize the attention scores to probabilities.
|
204 |
+
attention_probs = torch.softmax(attention_scores, dim=-1)
|
205 |
+
|
206 |
+
# This is actually dropping out entire tokens to attend to, which might
|
207 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
208 |
+
attention_probs = self.dropout(attention_probs)
|
209 |
+
|
210 |
+
# Mask heads if we want to
|
211 |
+
if head_mask is not None:
|
212 |
+
attention_probs = attention_probs * head_mask
|
213 |
+
|
214 |
+
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
215 |
+
|
216 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
|
217 |
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
218 |
+
|
219 |
+
output = self.dense(context_layer)
|
220 |
+
|
221 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
222 |
+
|
223 |
+
return outputs
|
224 |
+
|
225 |
+
|
226 |
+
class QuickGELU(nn.Module):
|
227 |
+
def forward(self, x: torch.Tensor):
|
228 |
+
return x * torch.sigmoid(1.702 * x)
|
229 |
+
|
230 |
+
|
231 |
+
class MplugOwlMLP(nn.Module):
|
232 |
+
def __init__(self, config):
|
233 |
+
super().__init__()
|
234 |
+
self.config = config
|
235 |
+
self.activation_fn = QuickGELU()
|
236 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
237 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
238 |
+
|
239 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
240 |
+
hidden_states = self.fc1(hidden_states)
|
241 |
+
hidden_states = self.activation_fn(hidden_states)
|
242 |
+
hidden_states = self.fc2(hidden_states)
|
243 |
+
return hidden_states
|
244 |
+
|
245 |
+
|
246 |
+
class MplugOwlVisionEncoderLayer(nn.Module):
|
247 |
+
def __init__(self, config):
|
248 |
+
super().__init__()
|
249 |
+
self.hidden_size = config.hidden_size
|
250 |
+
self.self_attn = MplugOwlVisionAttention(config)
|
251 |
+
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
252 |
+
self.mlp = MplugOwlMLP(config)
|
253 |
+
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
254 |
+
|
255 |
+
def forward(
|
256 |
+
self,
|
257 |
+
hidden_states: torch.Tensor,
|
258 |
+
attention_mask: torch.Tensor,
|
259 |
+
output_attentions: Optional[bool] = False,
|
260 |
+
) -> Tuple[torch.FloatTensor]:
|
261 |
+
"""
|
262 |
+
Args:
|
263 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
264 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
265 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
266 |
+
`(config.encoder_attention_heads,)`.
|
267 |
+
output_attentions (`bool`, *optional*):
|
268 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
269 |
+
returned tensors for more detail.
|
270 |
+
"""
|
271 |
+
residual = hidden_states
|
272 |
+
|
273 |
+
hidden_states = self.input_layernorm(hidden_states)
|
274 |
+
hidden_states, attn_weights = self.self_attn(
|
275 |
+
hidden_states=hidden_states,
|
276 |
+
head_mask=attention_mask,
|
277 |
+
output_attentions=output_attentions,
|
278 |
+
)
|
279 |
+
hidden_states = hidden_states + residual
|
280 |
+
residual = hidden_states
|
281 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
282 |
+
hidden_states = self.mlp(hidden_states)
|
283 |
+
|
284 |
+
hidden_states = hidden_states + residual
|
285 |
+
|
286 |
+
outputs = (hidden_states,)
|
287 |
+
|
288 |
+
if output_attentions:
|
289 |
+
outputs += (attn_weights,)
|
290 |
+
|
291 |
+
return outputs
|
292 |
+
|
293 |
+
|
294 |
+
class MplugOwlVisionEncoder(nn.Module):
|
295 |
+
"""
|
296 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
297 |
+
[`MplugOwlVisionEncoderLayer`].
|
298 |
+
|
299 |
+
Args:
|
300 |
+
config (`MplugOwlVisionConfig`):
|
301 |
+
The corresponding vision configuration for the `MplugOwlEncoder`.
|
302 |
+
"""
|
303 |
+
|
304 |
+
def __init__(self, config):
|
305 |
+
super().__init__()
|
306 |
+
self.config = config
|
307 |
+
self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
308 |
+
self.gradient_checkpointing = True
|
309 |
+
|
310 |
+
def forward(
|
311 |
+
self,
|
312 |
+
inputs_embeds,
|
313 |
+
attention_mask: Optional[torch.Tensor] = None,
|
314 |
+
output_attentions: Optional[bool] = None,
|
315 |
+
output_hidden_states: Optional[bool] = None,
|
316 |
+
return_dict: Optional[bool] = None,
|
317 |
+
) -> Union[Tuple, BaseModelOutput]:
|
318 |
+
r"""
|
319 |
+
Args:
|
320 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
321 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
322 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
323 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
324 |
+
|
325 |
+
- 1 for tokens that are **not masked**,
|
326 |
+
- 0 for tokens that are **masked**.
|
327 |
+
|
328 |
+
[What are attention masks?](../glossary#attention-mask)
|
329 |
+
output_attentions (`bool`, *optional*):
|
330 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
331 |
+
returned tensors for more detail.
|
332 |
+
output_hidden_states (`bool`, *optional*):
|
333 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
334 |
+
for more detail.
|
335 |
+
return_dict (`bool`, *optional*):
|
336 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
337 |
+
"""
|
338 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
339 |
+
output_hidden_states = (
|
340 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
341 |
+
)
|
342 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
343 |
+
|
344 |
+
encoder_states = () if output_hidden_states else None
|
345 |
+
all_attentions = () if output_attentions else None
|
346 |
+
|
347 |
+
hidden_states = inputs_embeds
|
348 |
+
for idx, encoder_layer in enumerate(self.layers):
|
349 |
+
if output_hidden_states:
|
350 |
+
encoder_states = encoder_states + (hidden_states,)
|
351 |
+
if self.gradient_checkpointing and self.training:
|
352 |
+
|
353 |
+
def create_custom_forward(module):
|
354 |
+
def custom_forward(*inputs):
|
355 |
+
return module(*inputs, output_attentions)
|
356 |
+
|
357 |
+
return custom_forward
|
358 |
+
|
359 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
360 |
+
create_custom_forward(encoder_layer),
|
361 |
+
hidden_states,
|
362 |
+
attention_mask,
|
363 |
+
)
|
364 |
+
else:
|
365 |
+
layer_outputs = encoder_layer(
|
366 |
+
hidden_states,
|
367 |
+
attention_mask,
|
368 |
+
output_attentions=output_attentions,
|
369 |
+
)
|
370 |
+
|
371 |
+
hidden_states = layer_outputs[0]
|
372 |
+
|
373 |
+
if output_attentions:
|
374 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
375 |
+
|
376 |
+
if output_hidden_states:
|
377 |
+
encoder_states = encoder_states + (hidden_states,)
|
378 |
+
|
379 |
+
if not return_dict:
|
380 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
381 |
+
return BaseModelOutput(
|
382 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
383 |
+
)
|
384 |
+
|
385 |
+
|
386 |
+
class MplugOwlVisionModel(PreTrainedModel):
|
387 |
+
main_input_name = "pixel_values"
|
388 |
+
|
389 |
+
def __init__(self, config):
|
390 |
+
super().__init__(config)
|
391 |
+
self.config = config
|
392 |
+
self.hidden_size = config.hidden_size
|
393 |
+
|
394 |
+
self.embeddings = MplugOwlVisionEmbeddings(config)
|
395 |
+
self.encoder = MplugOwlVisionEncoder(config)
|
396 |
+
self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
397 |
+
|
398 |
+
self.post_init()
|
399 |
+
|
400 |
+
|
401 |
+
def forward(
|
402 |
+
self,
|
403 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
404 |
+
output_attentions: Optional[bool] = None,
|
405 |
+
output_hidden_states: Optional[bool] = None,
|
406 |
+
return_dict: Optional[bool] = None,
|
407 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
408 |
+
r"""
|
409 |
+
Returns:
|
410 |
+
|
411 |
+
"""
|
412 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
413 |
+
output_hidden_states = (
|
414 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
415 |
+
)
|
416 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
417 |
+
|
418 |
+
if pixel_values is None:
|
419 |
+
raise ValueError("You have to specify pixel_values")
|
420 |
+
|
421 |
+
hidden_states = self.embeddings(pixel_values)
|
422 |
+
|
423 |
+
encoder_outputs = self.encoder(
|
424 |
+
inputs_embeds=hidden_states,
|
425 |
+
output_attentions=output_attentions,
|
426 |
+
output_hidden_states=output_hidden_states,
|
427 |
+
return_dict=return_dict,
|
428 |
+
)
|
429 |
+
|
430 |
+
last_hidden_state = encoder_outputs[0]
|
431 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
432 |
+
|
433 |
+
pooled_output = last_hidden_state[:, 0, :]
|
434 |
+
pooled_output = self.post_layernorm(pooled_output)
|
435 |
+
|
436 |
+
if not return_dict:
|
437 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
438 |
+
|
439 |
+
return BaseModelOutputWithPooling(
|
440 |
+
last_hidden_state=last_hidden_state,
|
441 |
+
pooler_output=pooled_output,
|
442 |
+
hidden_states=encoder_outputs.hidden_states,
|
443 |
+
attentions=encoder_outputs.attentions,
|
444 |
+
)
|
445 |
+
|
446 |
+
def get_input_embeddings(self):
|
447 |
+
return self.embeddings
|
448 |
+
|
449 |
+
|
450 |
+
class MplugDocOwlHReducerModel(PreTrainedModel):
|
451 |
+
def __init__(self, config, language_hidden_size):
|
452 |
+
super().__init__(config)
|
453 |
+
self.config = config
|
454 |
+
self.ln_q = torch.nn.LayerNorm(self.config.hidden_size, eps=1e-6)
|
455 |
+
self.conv_shape = (int(self.config.conv_shape.split('x')[0]), int(self.config.conv_shape.split('x')[1])) #
|
456 |
+
self.conv_patch=self.conv_shape[0]*self.conv_shape[1]
|
457 |
+
## feature interaction with a conv layer
|
458 |
+
self.reducer_before = torch.nn.Sequential(
|
459 |
+
nn.Conv2d(self.config.hidden_size, self.conv_patch*self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True),
|
460 |
+
nn.GELU()
|
461 |
+
)
|
462 |
+
## reduce visual feature length with a conv layer
|
463 |
+
self.reducer = nn.Conv2d(self.config.hidden_size, self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True)
|
464 |
+
## align visual features with language embedding with fc
|
465 |
+
self.visual_fc = torch.nn.Linear(self.config.hidden_size, language_hidden_size)
|
466 |
+
self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size))
|
467 |
+
|
468 |
+
self.post_init()
|
469 |
+
|
470 |
+
def forward(
|
471 |
+
self,
|
472 |
+
encoder_hidden_states=None
|
473 |
+
):
|
474 |
+
r"""
|
475 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
|
476 |
+
batch_size is the number of all images (global+crop) in a batch
|
477 |
+
Sequence of hidden-states at the output of the last layer of the encoder.
|
478 |
+
"""
|
479 |
+
encoder_hidden_states = encoder_hidden_states[:,1:,:] # remove the first cls token
|
480 |
+
B, L, C = encoder_hidden_states.shape # B, 1024=(448/14)^2, 1024
|
481 |
+
|
482 |
+
## feature interaction with a conv layer
|
483 |
+
encoder_hidden_states = rearrange(encoder_hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L)))
|
484 |
+
hidden_states = self.reducer_before(encoder_hidden_states) # B 4D H W/4
|
485 |
+
## reduce seq length with a conv layer
|
486 |
+
"""hidden_states = hidden_states.flatten(2).transpose(1, 2) # B 4D H W/4 -> B 4D H*W/4 -> B H*W/4 4D
|
487 |
+
hidden_states = rearrange(hidden_states, 'B L (X D) -> B (L X) D', X=self.conv_patch) # B (H W) D
|
488 |
+
hidden_states = rearrange(hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L))) # B D H W """
|
489 |
+
hidden_states = rearrange(hidden_states, 'B (X D) H W -> B D H (W X)', X=self.conv_patch) # B 4D H W/4 -> B D H W
|
490 |
+
sequence_output = self.reducer(hidden_states) # B,C,H,W -> B,C,H/conv_shape[1],W/(conv_shape[1])
|
491 |
+
sequence_output = sequence_output.flatten(2).transpose(1, 2) # B,C,H/conv_shape[1],W/(conv_shape[1]) -> B,C,L/conv_patch -> B,L/conv_patch,C
|
492 |
+
sequence_output = sequence_output.transpose(0, 1).contiguous() # L/conv_patch, B, C
|
493 |
+
## align visual features with language embedding with fc
|
494 |
+
sequence_output = self.visual_fc(sequence_output) # L/conv_patch, B, h
|
495 |
+
sequence_output = sequence_output.transpose(0, 1).contiguous() # B, s/4, h
|
496 |
+
sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(B, 1, 1)], dim=1)
|
497 |
+
|
498 |
+
return sequence_output
|
499 |
+
|
500 |
+
|
501 |
+
|