|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
from .modeling_llama2_mam import LlamaConfig, LlamaModel, LlamaForCausalLM |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from .configuration_mplug_docowl import (MPLUGDocOwlConfig, MplugOwlVisionConfig, MplugDocOwlHReducerConfig, MplugDocOwlHRDocCompressorConfig) |
|
from .visual_encoder import MplugOwlVisionModel, MplugDocOwlHReducerModel |
|
from .visual_compressor import MplugDocOwlHRDocCompressor |
|
from .processor import DocProcessor |
|
|
|
from .constants import IMAGE_TOKEN_INDEX, IGNORE_INDEX |
|
from icecream import ic |
|
|
|
from transformers import StoppingCriteria, TextStreamer |
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.keyword_ids = [] |
|
self.max_keyword_len = 0 |
|
for keyword in keywords: |
|
cur_keyword_ids = tokenizer(keyword).input_ids |
|
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: |
|
cur_keyword_ids = cur_keyword_ids[1:] |
|
if len(cur_keyword_ids) > self.max_keyword_len: |
|
self.max_keyword_len = len(cur_keyword_ids) |
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) |
|
self.tokenizer = tokenizer |
|
self.start_len = input_ids.shape[1] |
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" |
|
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) |
|
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] |
|
for keyword_id in self.keyword_ids: |
|
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): |
|
return True |
|
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
|
|
class MPLUGDocOwlMetaModel: |
|
_no_split_modules = ["MplugOwlVisionModel", "MplugDocOwlHReducerModel", "MplugDocOwlHRDocCompressor"] |
|
def __init__(self, config): |
|
super(MPLUGDocOwlMetaModel, self).__init__(config) |
|
self.vision_model = MplugOwlVisionModel( |
|
MplugOwlVisionConfig(**config.visual_config["visual_model"]) |
|
) |
|
v_img_row_tokens = int((config.visual_config["visual_model"]['image_size']/config.visual_config["visual_model"]['patch_size'])) |
|
v_img_col_tokens = v_img_row_tokens |
|
|
|
self.vision2text = MplugDocOwlHReducerModel( |
|
MplugDocOwlHReducerConfig(**config.visual_config["visual_hreducer"]), config.hidden_size |
|
) |
|
|
|
horizontal_reduce = int(config.visual_config["visual_hreducer"]['conv_shape'].split('x')[1]) |
|
v2t_img_col_tokens = int(v_img_row_tokens / horizontal_reduce) |
|
|
|
self.hr_compressor = MplugDocOwlHRDocCompressor( |
|
MplugDocOwlHRDocCompressorConfig(**config.visual_config["visual_hrcompressor"]), |
|
config.hidden_size, |
|
v2t_img_col_tokens |
|
) |
|
|
|
def get_vision_tower(self): |
|
vision_model = getattr(self, 'vision_model', None) |
|
if type(vision_model) is list: |
|
vision_model = vision_model[0] |
|
return vision_model |
|
|
|
def get_vision2text(self): |
|
vision2text = getattr(self, 'vision2text', None) |
|
if type(vision2text) is list: |
|
vision2text = vision2text[0] |
|
return vision2text |
|
|
|
def get_hrcompressor(self): |
|
hrcompressor = getattr(self, 'hr_compressor', None) |
|
if type(hrcompressor) is list: |
|
hrcompressor = hrcompressor[0] |
|
return hrcompressor |
|
|
|
class MPLUGDocOwlMetaForCausalLM(ABC): |
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def encode_images(self, images, patch_positions): |
|
image_features = self.get_model().vision_model(images).last_hidden_state |
|
image_features = self.get_model().vision2text(encoder_hidden_states=image_features) |
|
image_features = self.get_model().hr_compressor(hidden_states=image_features, patch_positions=patch_positions) |
|
return image_features |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, attention_mask, past_key_values, labels, images, patch_positions |
|
): |
|
|
|
if images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and images is not None and input_ids.shape[1] == 1: |
|
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) |
|
multiway_indices = torch.zeros_like(input_ids).long().to(self.device) |
|
return input_ids, multiway_indices, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images, patch_positions) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
else: |
|
image_features = self.encode_images(images, patch_positions) |
|
|
|
new_input_embeds = [] |
|
new_modality_indicators = [] |
|
new_labels = [] if labels is not None else None |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: |
|
|
|
|
|
half_len = cur_input_ids.shape[0] // 2 |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) |
|
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
|
|
cur_modality_indicators = torch.zeros(len(cur_input_embeds)).long().to(self.device) |
|
new_modality_indicators.append(cur_modality_indicators) |
|
if labels is not None: |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
cur_new_input_embeds = [] |
|
cur_modality_indicators = [] |
|
if labels is not None: |
|
cur_labels = labels[batch_idx] |
|
cur_new_labels = [] |
|
assert cur_labels.shape == cur_input_ids.shape |
|
while image_token_indices.numel() > 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
image_token_start = image_token_indices[0] |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
|
|
|
|
assert image_token_start == len(cur_input_ids[:image_token_start]) |
|
cur_modality_indicators.append(torch.zeros(len(cur_input_ids[:image_token_start])).long()) |
|
cur_modality_indicators.append(torch.ones(len(cur_image_features)).long()) |
|
|
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_labels = cur_labels[image_token_start+1:] |
|
cur_image_idx += 1 |
|
cur_input_ids = cur_input_ids[image_token_start+1:] |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
if cur_input_ids.numel() > 0: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) |
|
cur_modality_indicators.append(torch.zeros(len(cur_input_ids)).long()) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels) |
|
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] |
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
|
|
|
|
cur_modality_indicators = [x.to(device=self.device) for x in cur_modality_indicators] |
|
cur_modality_indicators = torch.cat(cur_modality_indicators, dim=0) |
|
new_modality_indicators.append(cur_modality_indicators) |
|
|
|
|
|
if labels is not None: |
|
cur_new_labels = torch.cat(cur_new_labels, dim=0) |
|
new_labels.append(cur_new_labels) |
|
|
|
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): |
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
|
|
new_input_embeds_align = [] |
|
for cur_new_embed in new_input_embeds: |
|
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) |
|
new_input_embeds_align.append(cur_new_embed) |
|
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) |
|
|
|
|
|
new_modality_indicators_align = [] |
|
for cur_modality_indicator in new_modality_indicators: |
|
cur_new_embed = torch.cat((cur_modality_indicator, torch.zeros(max_len - cur_modality_indicator.shape[0], dtype=cur_modality_indicator.dtype, device=cur_modality_indicator.device)), dim=0) |
|
new_modality_indicators_align.append(cur_new_embed) |
|
new_modality_indicators = torch.stack(new_modality_indicators_align, dim=0) |
|
|
|
|
|
if labels is not None: |
|
new_labels_align = [] |
|
_new_labels = new_labels |
|
for cur_new_label in new_labels: |
|
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) |
|
new_labels_align.append(cur_new_label) |
|
new_labels = torch.stack(new_labels_align, dim=0) |
|
|
|
|
|
if attention_mask is not None: |
|
new_attention_mask = [] |
|
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): |
|
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) |
|
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
assert attention_mask.shape == new_labels.shape |
|
else: |
|
new_input_embeds = torch.stack(new_input_embeds, dim=0) |
|
new_modality_indicators = torch.stack(new_modality_indicators, dim=0) |
|
if labels is not None: |
|
new_labels = torch.stack(new_labels, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) |
|
assert attention_mask.shape == new_input_embeds.shape[:2] |
|
return None, new_modality_indicators, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
|
|
class MPLUGDocOwlLlamaModel(MPLUGDocOwlMetaModel, LlamaModel): |
|
config_class = MPLUGDocOwlConfig |
|
|
|
def __init__(self, config: MPLUGDocOwlConfig): |
|
super(MPLUGDocOwlLlamaModel, self).__init__(config) |
|
|
|
|
|
class MPLUGDocOwl2(LlamaForCausalLM, MPLUGDocOwlMetaForCausalLM): |
|
config_class = MPLUGDocOwlConfig |
|
|
|
def __init__(self, config): |
|
super(LlamaForCausalLM, self).__init__(config) |
|
self.model = MPLUGDocOwlLlamaModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def init_processor(self, tokenizer, basic_image_size, crop_anchors): |
|
self.processor = DocProcessor(tokenizer=tokenizer, image_size=basic_image_size, anchors=crop_anchors) |
|
return self.processor |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
patch_positions: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
input_ids, modality_indicators, attention_mask, past_key_values, inputs_embeds, labels = \ |
|
self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images, patch_positions) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
modality_indicators=modality_indicators, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images": kwargs.get("images", None), |
|
"patch_positions": kwargs.get("patch_positions", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
def chat(self, messages, images, tokenizer): |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
image_tensor, patch_positions, input_ids = self.processor(images=images, messages=messages) |
|
|
|
image_tensor = image_tensor.to(self.model.device, dtype=torch.float16) |
|
patch_positions = patch_positions.to(self.model.device) |
|
input_ids = input_ids.unsqueeze(0).to(self.model.device) |
|
|
|
stopping_criteria = KeywordsStoppingCriteria(["</s>"], tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = self.generate( |
|
input_ids, |
|
images=image_tensor, |
|
patch_positions=patch_positions, |
|
do_sample=False, |
|
temperature=1.0, |
|
max_new_tokens=512, |
|
streamer=streamer, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria]) |
|
|
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() |
|
|
|
return outputs.replace('</s>', '') |
|
|
|
AutoConfig.register("mplug_docowl", MPLUGDocOwlConfig) |
|
AutoModelForCausalLM.register(MPLUGDocOwlConfig, MPLUGDocOwl2) |
|
|