Qwen2-Cantonese-7B-Instruct
Model Overview / 模型概述
Qwen2-Cantonese-7B-Instruct is a Cantonese language model based on Qwen2-7B-Instruct, fine-tuned using LoRA. It aims to enhance Cantonese text generation and comprehension capabilities, supporting various tasks such as dialogue generation, text summarization, and question-answering.
Qwen2-Cantonese-7B-Instruct係基於Qwen2-7B-Instruct嘅粵語語言模型,使用LoRA進行微調。 它旨在提高粵語文本的生成和理解能力,支持各種任務,如對話生成、文本摘要和問答。
Model Features / 模型特性
- Base Model: Qwen2-7B-Instruct
- Fine-tuning Method: LoRA instruction tuning
- Training Steps: 4572 steps
- Primary Language: Cantonese / 粵語
- Datasets:
- Training Tools: LLaMA-Factory
Quantized Version / 量化版本
A 4-bit quantized version of this model is also available: qwen2-cantonese-7b-instruct-q4_0.gguf.
此外,仲提供此模型嘅4位量化版本:qwen2-cantonese-7b-instruct-q4_0.gguf。
Alternative Model Recommendations / 備選模型舉薦
For alternatives, consider the following models, both fine-tuned by LordJia on Cantonese language tasks:
揾其他嘅話,可以諗下呢啲模型,全部都係LordJia用廣東話嘅工作調教好嘅:
- Llama-3-Cantonese-8B-Instruct based on Meta-Llama-3-8B-Instruct.
- Llama-3.1-Cantonese-8B-Instruct based on Meta-Llama-3.1-8B-Instruct.
License / 許可證
This model is licensed under the Apache 2.0 license. Please review the terms before use.
此模型喺Apache 2.0許可證下獲得許可。 請在使用前仔細閱讀呢啲條款。
Contributors / 貢獻
- LordJia https://ai.chao.cool
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 23.50 |
IFEval (0-Shot) | 54.35 |
BBH (3-Shot) | 32.45 |
MATH Lvl 5 (4-Shot) | 8.76 |
GPQA (0-shot) | 6.04 |
MuSR (0-shot) | 7.81 |
MMLU-PRO (5-shot) | 31.59 |
- Downloads last month
- 53
Model tree for lordjia/Qwen2-Cantonese-7B-Instruct
Datasets used to train lordjia/Qwen2-Cantonese-7B-Instruct
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard54.350
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard32.450
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard8.760
- acc_norm on GPQA (0-shot)Open LLM Leaderboard6.040
- acc_norm on MuSR (0-shot)Open LLM Leaderboard7.810
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard31.590