|
--- |
|
language: protein |
|
tags: |
|
- protein |
|
datasets: |
|
- uniref-100 |
|
--- |
|
|
|
# RITA-S |
|
|
|
RITA is a family of autoregressive protein models, developed by a collaboration of [Lighton](https://lighton.ai/), the [OATML group](https://oatml.cs.ox.ac.uk/) at Oxford, and the [Debbie Marks Lab](https://www.deboramarkslab.com/) at Harvard. |
|
|
|
|
|
|
|
Model | #Params | d_model | layers | lm loss uniref-100 |
|
--- | --- | --- | --- | --- | |
|
[**Small**](https://huggingface.co/lightonai/RITA_s) | 85M | 768 | 12 | 2.31 |
|
[Medium](https://huggingface.co/lightonai/RITA_m) | 300M | 1024 | 24 | 2.01 |
|
[Large](https://huggingface.co/lightonai/RITA_l)| 680M | 1536 | 24 | 1.82 |
|
[XLarge](https://huggingface.co/lightonai/RITA_xl)| 1.2B | 2048 | 24 | 1.70 |
|
|
|
For full results see our preprint: https://arxiv.org/abs/2205.05789 |
|
|
|
## Usage |
|
Instantiate a model like so: |
|
``` python |
|
from transformers import AutoModel, AutoModelForCausalLM |
|
model = AutoModelForCausalLM.from_pretrained("lightonai/RITA_s, trust_remote_code=True") |
|
tokenizer = AutoTokenizer.from_pretrained("lightonai/RITA_s") |
|
``` |
|
for generation we support pipelines: |
|
``` python |
|
from transformers import pipeline |
|
rita_gen = pipeline('text-generation', model=model, tokenizer=tokenizer) |
|
sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, |
|
num_return_sequences=2, eos_token_id=2) |
|
for seq in sequences: |
|
print(f"seq: {seq['generated_text'].replace(' ', '')}") |
|
``` |
|
|
|
## How to cite |
|
|
|
@article{hesslow2022rita, |
|
title={RITA: a Study on Scaling Up Generative Protein Sequence Models}, |
|
author={Hesslow, Daniel and Zanichelli, Niccol{\'o} and Notin, Pascal and Poli, Iacopo and Marks, Debora}, |
|
journal={arXiv preprint arXiv:2205.05789}, |
|
year={2022} |
|
} |
|
|