See axolotl config
axolotl version: 0.4.0
base_model: /media/renfroe/llms/SmolLM-360M/
model_type: LlamaForCausalLM
tokenizer_type: GPT2Tokenizer
seed: 122887
load_in_8bit: false
load_in_4bit: false
strict: false
max_steps: 0
resume_from_checkpoint:
datasets:
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/Dynamic_Optimization_Methods_with_Applications_sqa_answers_only.json
type:
field_instruction: question
field_output: answer
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
- path: /home/renfroe/Dev/tinyllama-models/dataset/open_hermes_top_tech.json
type: sharegpt
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/hermes_prior_knowledge_question_expansion_with_answers.json
type:
field_instruction: question
field_output: answer
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/hermes_prior_knowledge_question_expansion_with_answers.json
type:
field_instruction: question
field_output: answer
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
- path: /home/renfroe/Desktop/sqa_tiny-llama_dataset/or-farm_sharegpt.json
type: sharegpt
dataset_prepared_path:
val_set_size: 0.2
output_dir: ./SmolLM-Ora
auto_resume_from_checkpoints: false
sequence_len: 2048
sample_packing: true
chat_template: chatml
wandb_project: SmolLM-Ora
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 10
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: linear
weight_decay: 0.0000001
learning_rate: 0.0001
lr_scheduler_kwargs:
# num_cycles: 3
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: False
warmup_steps: 50
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed:
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|endoftext|>"
eos_token: "<|endoftext|>"
pad_token: "<|endoftext|>"
SmolLM-Ora
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8298
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 122887
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0131 | 0.01 | 1 | 1.0419 |
0.9727 | 0.25 | 27 | 0.9962 |
0.953 | 0.5 | 54 | 0.9076 |
0.8494 | 0.75 | 81 | 0.8792 |
0.9297 | 1.0 | 108 | 0.8632 |
0.8801 | 1.22 | 135 | 0.8527 |
0.8133 | 1.47 | 162 | 0.8459 |
0.8342 | 1.72 | 189 | 0.8410 |
0.8973 | 1.97 | 216 | 0.8376 |
0.7731 | 2.19 | 243 | 0.8350 |
0.8207 | 2.44 | 270 | 0.8332 |
0.7963 | 2.69 | 297 | 0.8318 |
0.81 | 2.94 | 324 | 0.8309 |
0.8351 | 3.18 | 351 | 0.8302 |
0.8104 | 3.43 | 378 | 0.8299 |
0.9019 | 3.68 | 405 | 0.8298 |
0.7828 | 3.93 | 432 | 0.8298 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.