Edit model card

Real-time Speech Summarization for Medical Conversations

drawing

Please cite this paper: https://arxiv.org/abs/2406.15888

@article{VietMed_Sum,
title={Real-time Speech Summarization for Medical Conversations},
author={Le-Duc, Khai and Nguyen, Khai-Nguyen and Vo-Dang, Long and Hy, Truong-Son},
journal={arXiv preprint arXiv:2406.15888},
booktitle={Interspeech 2024},
url = {https://arxiv.org/abs/2406.15888},
year={2024}
}

Model Card for Model ID

Model Details

Model Description

This model summarizes medical dialogues in Vietnamese. It can work in tandem with an ASR system to provide real-time dialogue summary.

  • Developed by: Khai-Nguyen Nguyen
  • Language(s) (NLP): Vietnamese
  • Finetuned from model [optional]: ViT5

How to Get Started with the Model

Install the pre-requisite packages in Python.

pip install transformers

Use the code below to get started with the model.

from transformers import pipeline

# Initialize the pipeline with the ViT5 model, specify the device to use CUDA for GPU acceleration
pipe = pipeline("text2text-generation", model="monishsystem/medisum_vit5", device='cuda')

# Example text in Vietnamese describing a traditional medicine product
example = "Loại thuốc này chứa các thành phần đông y đặc biệt tốt cho sức khoẻ, giúp tăng cường sinh lý và bổ thận tráng dương, đặc biệt tốt cho người cao tuổi và người có bệnh lý nền"

# Generate a summary for the input text with a maximum length of 50 tokens
summary = pipe(example, max_new_tokens=50)

# Print the generated summary
print(summary)
Downloads last month
12
Safetensors
Model size
226M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train leduckhai/ViT5-VietMedSum