Edit model card

MahaSBERT

A MahaBERT model (l3cube-pune/marathi-bert-v2) trained on the NLI dataset.
This is released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP
A multilingual version of this model supporting major Indic languages and cross-lingual capabilities is shared here indic-sentence-bert-nli

A better sentence similarity model(fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/marathi-sentence-similarity-sbert

More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)

@article{joshi2022l3cubemahasbert,
  title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
  author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2211.11187},
  year={2022}
}

monolingual Indic SBERT paper
multilingual Indic SBERT paper

Other Monolingual Indic sentence BERT models are listed below:
Marathi SBERT
Hindi SBERT
Kannada SBERT
Telugu SBERT
Malayalam SBERT
Tamil SBERT
Gujarati SBERT
Oriya SBERT
Bengali SBERT
Punjabi SBERT
Indic SBERT (multilingual)

Other Monolingual similarity models are listed below:
Marathi Similarity
Hindi Similarity
Kannada Similarity
Telugu Similarity
Malayalam Similarity
Tamil Similarity
Gujarati Similarity
Oriya Similarity
Bengali Similarity
Punjabi Similarity
Indic Similarity (multilingual)

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


def cls_pooling(model_output, attention_mask):
    return model_output[0][:,0]


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
Downloads last month
73
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.