|
---
|
|
license: apache-2.0
|
|
---
|
|
|
|
## Model Overview
|
|
|
|
PlantCaduceus is a DNA language model pre-trained on 16 Angiosperm genomes. Utilizing the [Caduceus](https://caduceus-dna.github.io/) and [Mamba](https://arxiv.org/abs/2312.00752) architectures and a masked language modeling objective, PlantCaduceus is designed to learn evolutionary conservation and DNA sequence grammar from 16 species spanning a history of 160 million years. We have trained a series of PlantCaduceus models with varying parameter sizes:
|
|
|
|
- **[PlantCaduceus_l20](https://huggingface.co/kuleshov-group/PlantCaduceus_l20)**: 20 layers, 384 hidden size, 20M parameters
|
|
- **[PlantCaduceus_l24](https://huggingface.co/kuleshov-group/PlantCaduceus_l24)**: 24 layers, 512 hidden size, 40M parameters
|
|
- **[PlantCaduceus_l28](https://huggingface.co/kuleshov-group/PlantCaduceus_l28)**: 28 layers, 768 hidden size, 112M parameters
|
|
- **[PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)**: 32 layers, 1024 hidden size, 225M parameters
|
|
|
|
## How to use
|
|
```python
|
|
from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer
|
|
import torch
|
|
model_path = 'kuleshov-group/PlantCaduceus_l24'
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
model = AutoModelForMaskedLM.from_pretrained(model_path, trust_remote_code=True, device_map=device)
|
|
model.eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
sequence = "ATGCGTACGATCGTAG"
|
|
encoding = tokenizer.encode_plus(
|
|
sequence,
|
|
return_tensors="pt",
|
|
return_attention_mask=False,
|
|
return_token_type_ids=False
|
|
)
|
|
input_ids = encoding["input_ids"].to(device)
|
|
with torch.inference_mode():
|
|
outputs = model(input_ids=input_ids, output_hidden_states=True)
|
|
```
|
|
|
|
## Citation
|
|
```bibtex
|
|
@article {Zhai2024.06.04.596709,
|
|
author = {Zhai, Jingjing and Gokaslan, Aaron and Schiff, Yair and Berthel, Ana and Liu, Zong-Yan and Miller, Zachary R and Scheben, Armin and Stitzer, Michelle C and Romay, Cinta and Buckler, Edward S. and Kuleshov, Volodymyr},
|
|
title = {Cross-species plant genomes modeling at single nucleotide resolution using a pre-trained DNA language model},
|
|
elocation-id = {2024.06.04.596709},
|
|
year = {2024},
|
|
doi = {10.1101/2024.06.04.596709},
|
|
URL = {https://www.biorxiv.org/content/early/2024/06/05/2024.06.04.596709},
|
|
eprint = {https://www.biorxiv.org/content/early/2024/06/05/2024.06.04.596709.full.pdf},
|
|
journal = {bioRxiv}
|
|
}
|
|
```
|
|
|
|
## Contact
|
|
Jingjing Zhai ([email protected]) |