dataset_infos_llama_2
This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset.
Model description
Llama-2-7b-chat-hfμ metaμμ κ°λ°ν μ¬μ νμ΅ ν μ€νΈ μμ± μΈμ΄λͺ¨λΈ μ λλ€. λ¬Έμμ΄μ μ λ ₯μΌλ‘ νλ©°, λ¬Έμμ΄μ μμ±ν©λλ€. ν΄λΉ λͺ¨λΈ(meta-llama/Llama-2-7b-chat-hf)μ λ² μ΄μ€ λͺ¨λΈλ‘ νμ¬ λ―ΈμΈνλμ μ§ννμμ΅λλ€.
'Llama-2-7b-chat-hf' is a pre-trained text generation language model developed by Meta. It takes a string as input and generates text. We fine-tuned this model based on it(meta-llama/Llama-2-7b-chat-hf).
Intended uses & limitations
nsmc λ°μ΄ν°μ μ μ¬μ©μκ° μ λ ₯ν 리뷰 λ¬Έμ₯μ λΆλ₯νλ μμ΄μ νΈμ λλ€. μ¬μ©μ 리뷰 λ¬Έμ₯μΌλ‘λΆν° 'κΈμ ' λλ 'λΆμ 'μ νλ¨ν©λλ€.
This agent classifies user-input review sentences from NSMC dataset. It determines whether the user review is 'positive' or 'negative' based on the input review sentence.
Training and test data
Training λ° test λ°μ΄ν°λ nsmc λ°μ΄ν° μ μμ λ‘λ©ν΄ μ¬μ©ν©λλ€. (elvaluation λ°μ΄ν°λ μ¬μ©νμ§ μμ΅λλ€.)
We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)
Training procedure
μ¬μ©μμ μν 리뷰 λ¬Έμ₯μ μ λ ₯μΌλ‘ λ°μ λ¬Έμ₯μ 'κΈμ (1)' λλ 'λΆμ (0)'μΌλ‘ λΆλ₯ν©λλ€.
Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 900
- mixed_precision_training: Native AMP
Training results
- Binary Confusion Matrix | | TP | TN |
|:-----|:------------:|:------------:| | PP | 425 | 67 | | PN | 66 | 442 |
- Accuracy: 0.894
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
Model tree for kjh01/dataset_infos_llama_2
Base model
meta-llama/Llama-2-7b-chat-hf