T5 Base with QA + Summary + Emotion
Dependencies
Requires transformers>=4.0.0
Description
This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.
It achieves a score of F1 79.5 on the Squad 2 dev set and a score of F1 70.6 on the CoQa dev set.
Summarisation and emotion detection has not been evaluated yet.
Usage
Question answering
With Transformers
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
def get_answer(question, prev_qa, context):
input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa]
input_text.append(f"q: {question}")
input_text.append(f"c: {context}")
input_text = " ".join(input_text)
features = tokenizer([input_text], return_tensors='pt')
tokens = model.generate(input_ids=features['input_ids'],
attention_mask=features['attention_mask'], max_length=64)
return tokenizer.decode(tokens[0], skip_special_tokens=True)
print(get_answer("Why is the moon yellow?", "I'm not entirely sure why the moon is yellow.")) # unknown
context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla."
print(get_answer("Why not?", [("Does Elon Musk still work with OpenAI", "No")], context)) # to avoid possible future conflicts with his role as CEO of Tesla
With Kiri
from kiri.models import T5QASummaryEmotion
context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla."
prev_qa = [("Does Elon Musk still work with OpenAI", "No")]
model = T5QASummaryEmotion()
# Leave prev_qa blank for non conversational question-answering
model.qa("Why not?", context, prev_qa=prev_qa)
> "to avoid possible future conflicts with his role as CEO of Tesla"
Summarisation
With Transformers
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
def summary(context):
input_text = f"summarize: {context}"
features = tokenizer([input_text], return_tensors='pt')
tokens = model.generate(input_ids=features['input_ids'],
attention_mask=features['attention_mask'], max_length=64)
return tokenizer.decode(tokens[0], skip_special_tokens=True)
With Kiri
from kiri.models import T5QASummaryEmotion
model = T5QASummaryEmotion()
model.summarise("Long text to summarise")
> "Short summary of long text"
Emotion detection
With Transformers
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
def emotion(context):
input_text = f"emotion: {context}"
features = tokenizer([input_text], return_tensors='pt')
tokens = model.generate(input_ids=features['input_ids'],
attention_mask=features['attention_mask'], max_length=64)
return tokenizer.decode(tokens[0], skip_special_tokens=True)
With Kiri
from kiri.models import T5QASummaryEmotion
model = T5QASummaryEmotion()
model.emotion("I hope this works!")
> "optimism"
About us
Kiri makes using state-of-the-art models easy, accessible and scalable.
- Downloads last month
- 431
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.