metadata
language:
- ur
license: apache-2.0
tags:
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: wav2vec2-large-xls-r-300m-Urdu
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: ur
metrics:
- type: wer
value: 39.89
name: Test WER
- type: cer
value: 16.7
name: Test CER
wav2vec2-large-xls-r-300m-Urdu
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.9889
- Wer: 0.5607
- Cer: 0.2370
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Urdu --dataset mozilla-foundation/common_voice_8_0 --config ur --split test
Inference With LM
from datasets import load_dataset, Audio
from transformers import pipeline
model = "kingabzpro/wav2vec2-large-xls-r-300m-Urdu"
data = load_dataset("mozilla-foundation/common_voice_8_0",
"ur",
split="test",
streaming=True,
use_auth_token=True)
sample_iter = iter(data.cast_column("path",
Audio(sampling_rate=16_000)))
sample = next(sample_iter)
asr = pipeline("automatic-speech-recognition", model=model)
prediction = asr(sample["path"]["array"],
chunk_length_s=5,
stride_length_s=1)
prediction
# => {'text': 'اب یہ ونگین لمحاتانکھار دلمیں میںفوث کریلیا اجائ'}
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
3.6398 | 30.77 | 400 | 3.3517 | 1.0 | 1.0 |
2.9225 | 61.54 | 800 | 2.5123 | 1.0 | 0.8310 |
1.2568 | 92.31 | 1200 | 0.9699 | 0.6273 | 0.2575 |
0.8974 | 123.08 | 1600 | 0.9715 | 0.5888 | 0.2457 |
0.7151 | 153.85 | 2000 | 0.9984 | 0.5588 | 0.2353 |
0.6416 | 184.62 | 2400 | 0.9889 | 0.5607 | 0.2370 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Eval results on Common Voice 8 "test" (WER):
Without LM | With LM (run ./eval.py ) |
---|---|
52.03 | 39.89 |