Qwen2-7B-Instruct-SPPO-Function-call-v2.12
This model is a fine-tuned version of slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.8 on the slm-research-vn/dpo-format-function-calling-v4, the slm-research-vn/dpo-format-glaive-code-assistant-v3-with-mistral-large-slm-iter4 and the argilla/dpo-mix-7k datasets. It achieves the following results on the evaluation set:
- Loss: 0.3322
- Rewards/chosen: 0.5523
- Rewards/rejected: -0.7005
- Rewards/accuracies: 0.9017
- Rewards/margins: 1.2528
- Logps/rejected: -278.7327
- Logps/chosen: -129.0717
- Logits/rejected: -0.5984
- Logits/chosen: -0.7738
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6806 | 0.0916 | 100 | 0.6816 | 0.0303 | 0.0099 | 0.6445 | 0.0205 | -264.5260 | -139.5110 | -0.5879 | -0.7638 |
0.5704 | 0.1832 | 200 | 0.5993 | 0.3495 | 0.1473 | 0.8237 | 0.2023 | -261.7780 | -133.1277 | -0.5881 | -0.7638 |
0.5032 | 0.2749 | 300 | 0.5313 | 0.5795 | 0.1792 | 0.8526 | 0.4003 | -261.1383 | -128.5271 | -0.5893 | -0.7651 |
0.4548 | 0.3665 | 400 | 0.4727 | 0.6406 | 0.0523 | 0.8844 | 0.5884 | -263.6780 | -127.3051 | -0.5901 | -0.7660 |
0.3823 | 0.4581 | 500 | 0.4235 | 0.6412 | -0.1314 | 0.8931 | 0.7726 | -267.3507 | -127.2934 | -0.5914 | -0.7672 |
0.3513 | 0.5497 | 600 | 0.3843 | 0.6087 | -0.3415 | 0.9133 | 0.9502 | -271.5532 | -127.9448 | -0.5936 | -0.7693 |
0.3444 | 0.6413 | 700 | 0.3571 | 0.5871 | -0.5028 | 0.9104 | 1.0898 | -274.7784 | -128.3763 | -0.5965 | -0.7721 |
0.3486 | 0.7329 | 800 | 0.3427 | 0.5681 | -0.6155 | 0.9104 | 1.1836 | -277.0341 | -128.7559 | -0.5971 | -0.7725 |
0.3317 | 0.8246 | 900 | 0.3349 | 0.5586 | -0.6739 | 0.9133 | 1.2326 | -278.2013 | -128.9451 | -0.5993 | -0.7748 |
0.3077 | 0.9162 | 1000 | 0.3328 | 0.5530 | -0.6974 | 0.9075 | 1.2504 | -278.6715 | -129.0585 | -0.5998 | -0.7754 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2