kenhktsui's picture
Add SetFit model
cf843e7 verified
metadata
base_model: sentence-transformers/paraphrase-mpnet-base-v2
datasets:
  - zeroshot/twitter-financial-news-sentiment
library_name: setfit
metrics:
  - f1
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: >-
      Listen to our latest #RegionalView, where Regional Economist Alex Marre
      discusses economic conditions at a conferen… https://t.co/kPM1I5vMfE
  - text: Peter Thiel Divides Facebook Internally Over Ad Policy (Radio)
  - text: >-
      $SCANX: Mid cap notable movers of interest -- Kohl's (KSS) advances off of
      recent lows https://t.co/ZM3fmCoLx5
  - text: >-
      US wants China trade deal but won't turn blind eye to Hong Kong, Trump
      national security advisor says https://t.co/dvrewpls4T
  - text: Salarius Pharma files for equity offering
inference: true
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: zeroshot/twitter-financial-news-sentiment
          type: zeroshot/twitter-financial-news-sentiment
          split: test
        metrics:
          - type: f1
            value: 0.6675041876046901
            name: F1

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model trained on the zeroshot/twitter-financial-news-sentiment dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
Bullish
Bearish
Neutral
  • "How is a bank's GSIB score calculated https://t.co/m7AIabn6U0"
  • '$GOOG $GOOGL - Google rivals want EU to investigate vacation rentals https://t.co/8nXAOxhcqG'
  • 'EU goes into meeting frenzy ahead of February 20 summit on next seven-year budget'

Evaluation

Metrics

Label F1
all 0.6675

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Salarius Pharma files for equity offering")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 11.1429 20
Label Training Sample Count
Bearish 11
Bullish 16
Neutral 15

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (5, 5)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0137 1 0.4046 -
0.6849 50 0.1465 -
1.0 73 - 0.2203
1.3699 100 0.002 -
2.0 146 - 0.2563
2.0548 150 0.0006 -
2.7397 200 0.0007 -
3.0 219 - 0.2704
3.4247 250 0.0006 -
4.0 292 - 0.2813
4.1096 300 0.0002 -
4.7945 350 0.0004 -
5.0 365 - 0.2856
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.9.19
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.4.0
  • Datasets: 2.20.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}