metadata
base_model: sentence-transformers/paraphrase-mpnet-base-v2
datasets:
- zeroshot/twitter-financial-news-sentiment
library_name: setfit
metrics:
- f1
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
Listen to our latest #RegionalView, where Regional Economist Alex Marre
discusses economic conditions at a conferen… https://t.co/kPM1I5vMfE
- text: Peter Thiel Divides Facebook Internally Over Ad Policy (Radio)
- text: >-
$SCANX: Mid cap notable movers of interest -- Kohl's (KSS) advances off of
recent lows https://t.co/ZM3fmCoLx5
- text: >-
US wants China trade deal but won't turn blind eye to Hong Kong, Trump
national security advisor says https://t.co/dvrewpls4T
- text: Salarius Pharma files for equity offering
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: zeroshot/twitter-financial-news-sentiment
type: zeroshot/twitter-financial-news-sentiment
split: test
metrics:
- type: f1
value: 0.6675041876046901
name: F1
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model trained on the zeroshot/twitter-financial-news-sentiment dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
- Training Dataset: zeroshot/twitter-financial-news-sentiment
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Bullish |
|
Bearish |
|
Neutral |
|
Evaluation
Metrics
Label | F1 |
---|---|
all | 0.6675 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Salarius Pharma files for equity offering")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 11.1429 | 20 |
Label | Training Sample Count |
---|---|
Bearish | 11 |
Bullish | 16 |
Neutral | 15 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0137 | 1 | 0.4046 | - |
0.6849 | 50 | 0.1465 | - |
1.0 | 73 | - | 0.2203 |
1.3699 | 100 | 0.002 | - |
2.0 | 146 | - | 0.2563 |
2.0548 | 150 | 0.0006 | - |
2.7397 | 200 | 0.0007 | - |
3.0 | 219 | - | 0.2704 |
3.4247 | 250 | 0.0006 | - |
4.0 | 292 | - | 0.2813 |
4.1096 | 300 | 0.0002 | - |
4.7945 | 350 | 0.0004 | - |
5.0 | 365 | - | 0.2856 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.9.19
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.4.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}