Edit model card

financial-twhin-bert-large-3labels-test1

This model is a fine-tuned version of Twitter/twhin-bert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3334
  • Accuracy: 0.8826
  • F1: 0.8823

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9.656814753771254e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 1203
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9822 0.1550 100 0.7065 0.6772 0.5469
0.7307 0.3101 200 0.5716 0.7471 0.7179
0.6482 0.4651 300 0.5388 0.7716 0.7493
0.6008 0.6202 400 0.4300 0.8494 0.8446
0.5237 0.7752 500 0.4190 0.8343 0.8401
0.5106 0.9302 600 0.4114 0.8444 0.8404
0.4832 1.0853 700 0.3865 0.8545 0.8596
0.4031 1.2403 800 0.3741 0.8602 0.8653
0.3729 1.3953 900 0.3334 0.8826 0.8823
0.3661 1.5504 1000 0.3494 0.8725 0.8750
0.332 1.7054 1100 0.3390 0.8725 0.8753
0.3637 1.8605 1200 0.3386 0.8689 0.8724

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
561M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kekunh/financial-twhin-bert-large-3labels-test1

Finetuned
(11)
this model