LiLT-SER-IT
This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:
- Loss: 2.5355
- Precision: 0.7262
- Recall: 0.7927
- F1: 0.7580
- Accuracy: 0.7687
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0696 | 7.46 | 500 | 1.0876 | 0.6322 | 0.6517 | 0.6418 | 0.7584 |
0.0576 | 14.93 | 1000 | 1.3989 | 0.6712 | 0.7601 | 0.7129 | 0.7601 |
0.0096 | 22.39 | 1500 | 1.8059 | 0.6774 | 0.7639 | 0.7181 | 0.7662 |
0.0092 | 29.85 | 2000 | 2.0416 | 0.7266 | 0.7334 | 0.7300 | 0.7652 |
0.0003 | 37.31 | 2500 | 2.0467 | 0.7166 | 0.7539 | 0.7348 | 0.7628 |
0.0013 | 44.78 | 3000 | 2.0159 | 0.7027 | 0.7821 | 0.7403 | 0.7638 |
0.0013 | 52.24 | 3500 | 2.2751 | 0.6961 | 0.7728 | 0.7325 | 0.7575 |
0.0002 | 59.7 | 4000 | 2.2084 | 0.7236 | 0.7563 | 0.7396 | 0.7723 |
0.0002 | 67.16 | 4500 | 2.1843 | 0.7048 | 0.7701 | 0.7360 | 0.7581 |
0.0001 | 74.63 | 5000 | 2.2483 | 0.7366 | 0.7745 | 0.7551 | 0.7770 |
0.0001 | 82.09 | 5500 | 2.2685 | 0.7171 | 0.7752 | 0.7451 | 0.7677 |
0.0005 | 89.55 | 6000 | 2.2877 | 0.7180 | 0.7821 | 0.7487 | 0.7692 |
0.0001 | 97.01 | 6500 | 2.2574 | 0.7308 | 0.7725 | 0.7511 | 0.7721 |
0.0 | 104.48 | 7000 | 2.4696 | 0.7255 | 0.7862 | 0.7546 | 0.7660 |
0.0 | 111.94 | 7500 | 2.3996 | 0.7140 | 0.7917 | 0.7509 | 0.7725 |
0.0 | 119.4 | 8000 | 2.4592 | 0.7261 | 0.7852 | 0.7545 | 0.7665 |
0.0 | 126.87 | 8500 | 2.4129 | 0.7336 | 0.7900 | 0.7607 | 0.7718 |
0.0 | 134.33 | 9000 | 2.5367 | 0.7316 | 0.7896 | 0.7595 | 0.7666 |
0.0 | 141.79 | 9500 | 2.5327 | 0.7278 | 0.7900 | 0.7576 | 0.7663 |
0.0 | 149.25 | 10000 | 2.5355 | 0.7262 | 0.7927 | 0.7580 | 0.7687 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kavg/LiLT-SER-IT
Evaluation results
- Precision on xfunvalidation set self-reported0.726
- Recall on xfunvalidation set self-reported0.793
- F1 on xfunvalidation set self-reported0.758
- Accuracy on xfunvalidation set self-reported0.769